Name \qquad Date \qquad Period

Worksheet 11.2-Taylor Polynomials

Show all work. No calculator except unless specifically stated.

Short Answer/Free Response

On problems 1-5, find a Maclaurin polynomial of degree n for each of the following.

1. $f(x)=e^{-x}, n=3$
2. $f(x)=e^{2 x}, n=4$
3. $f(x)=\cos x, n=8$
4. $f(x)=x e^{2 x}, n=4$
5. $f(x)=\frac{1}{x+1}, n=5$

On problems 6-8, find a Taylor polynomial of degree n centered at $x=c$ for each of the following.
6. $f(x)=\frac{1}{x}, n=5, c=1$
7. $f(x)=\ln x, n=5, c=1$
8. $f(x)=\sin x, n=6, c=\frac{\pi}{4}$
9. (Calculator Permitted) Use your answer from problem 1 to approximate $f\left(\frac{1}{2}\right)$ to four decimal places.
10. (Calculator Permitted) Use your answer from problem 7 to approximate $f(1.2)$ to four decimal places.
11. Suppose that function $f(x)$ is approximated near $x=0$ by a sixth-degree Taylor polynomial $P_{6}(x)=3 x-4 x^{3}+5 x^{6}$. Give the value of each of the following:
(a) $f(0)$
(b) $f^{\prime}(0)$
(c) $f^{\prime \prime \prime}(0)$
(d) $f^{(5)}(0)$
(e) $f^{(6)}(0)$
12. (Calculator Permitted) Suppose that g is a function which has continuous derivatives, and that $g(5)=3, g^{\prime}(5)=-2, g^{\prime \prime}(5)=1, g^{\prime \prime \prime}(5)=-3$
(a) What is the Taylor polynomial of degree 2 for g near 5? What is the Taylor polynomial of degree 3 near 5?
(b) Use the two polynomials that you found in part (a) to approximate $g(4.9)$.

For problems 13-16, suppose that $P_{2}(x)=a+b x+c x^{2}$ is the second degree Taylor polynomial for the function f about $x=0$. What can you say about the signs of a, b, and c, if f has the graphs given below?
13.

15.

14.

16.

17. Show how you can use the Taylor approximation $\sin x \approx x-\frac{x^{3}}{3!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
18. Use the fourth-degree Taylor approximation of $\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$.
19. Estimate the integral $\int_{0}^{1} \frac{\sin t}{t} d t$ using a Taylor polynomial for $\sin t$ about $t=0$ of degree 5 .

Multiple Choice

20. If $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0$, and $f^{\prime \prime \prime}(0)=2$, then which of the following is the third-order Taylor polynomial generated by $f(x)$ at $x=0$?
(A) $2 x^{3}+x$
(B) $\frac{1}{3} x^{3}+\frac{1}{2} x$
(C) $\frac{2}{3} x^{3}+x$
(D) $2 x^{3}-x$
(E) $\frac{1}{3} x^{3}+x$
21. Which of the following is the coefficient of x^{4} in the Maclaurin polynomial generated by $\cos (3 x)$?
(A) $\frac{27}{8}$
(B) 9
(C) $\frac{1}{24}$
(D) 0
(E) $-\frac{27}{8}$
22. Which of the following is the Taylor polynomial generated by $f(x)=\cos x$ at $x=\frac{\pi}{2}$?
(A) $\left(x-\frac{\pi}{2}\right)-\frac{\left(x-\frac{\pi}{2}\right)^{3}}{3!}+\frac{\left(x-\frac{\pi}{2}\right)^{4}}{4!}$
(B) $1+\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2!}+\frac{\left(x-\frac{\pi}{2}\right)^{4}}{4!}$
(C) $1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2!}+\frac{\left(x-\frac{\pi}{2}\right)^{4}}{4!}$
(D) $1-\left(x-\frac{\pi}{2}\right)^{2}+\left(x-\frac{\pi}{2}\right)^{4}$
(E) $-\left(x-\frac{\pi}{2}\right)+\frac{\left(x-\frac{\pi}{2}\right)^{3}}{6}$
23. (Calculator Permitted) Which of the following gives the Maclaurin polynomial of order 5 approximation to $\sin (1.5)$?
(A) 0.965
(B) 0.985
(C) 0.997
(D) 1.001
(E) 1.005
24. Which of the following is the quadratic approximation for $f(x)=e^{-x}$ at $x=0$?
(A) $1-x+\frac{1}{2} x^{2}$
(B) $1-x-\frac{1}{2} x^{2}$
(C) $1+x+\frac{1}{2} x^{2}$
(D) $1+x$
(E) $1-x$
