AP Calculus AB 2020 Mock AP Exam \#4

1) $\mathbf{2 5}$ minutes (15 points)

The function g has derivative g^{\prime} where g^{\prime} is dereasing and twice-differentiable. Selected values of g^{\prime} are given in the table. It is given that $g(1)=2$

x	1	3	4	10
$g^{\prime}(x)$	9	7	5	0
$g^{\prime \prime}(x)$	4	1	2	6

a) What can we conclude using mean value theorem in the interval $[1,10]$
b) Use left Riemann Sum with 3 subintervals indicated in table to approximate $\int_{1}^{10} g^{\prime}(x) d x$ Is this an over or underapproximation of $\int_{1}^{10} g^{\prime}(x) d x$? Provide support for your answer.
c) Evaluate $\int_{-1}^{-3} g^{\prime \prime}(1-3 x) d x$. Show the work that leads to your answer.
d)Evaluate $\lim _{x \rightarrow 1} \frac{2 e^{\left(9-g^{\prime}(x)\right)}-2}{g^{\prime}(4 x)-5}$ Show work to support your answer.
e) The function w is defined by $w(x)=3 x^{2}\left(g^{\prime}(2 x)\right)$. Find $w^{\prime}(2)$.
f) Given the differential equation $y^{\prime}=(1-2 y) g^{\prime \prime}(x)$. Let $y=k(x)$ be the particular solution with initial condition of $k(1)=0$. Then use expression to find $k(3)$

2. 15 minutes

The function f is continuous on the closed interval $[-4,3]$.
The graph of f consists of 3 line segments and semicircle.
$\mathrm{H}(\mathrm{x})$ is defined as $\mathrm{H}(\mathrm{x})=\int_{-1}^{x} f(t) d t$

Graph of f
a) Find the x -coordinate of each point of inflection for graph of $\mathrm{H}(\mathrm{x})$. Justify your answer.
b) Find the maximum value of H on the closed interval $[-4,3]$. Justify your answer.
c) Find $\mathrm{H}^{\prime \prime}(2)$. Justify your answer.
d) Let $\mathrm{p}(\mathrm{x})$ be defined below: Is p continuous at $\mathrm{x}=1$? Show work leading to your answer.

$$
p(x)= \begin{cases}f(x)+1 & \text { for } x \leq 1 \\ f(x+2)-f(x) & \text { for } x>1\end{cases}
$$

e) For $-4 \leq t \leq 3$, a particle moves along the x-axis. The velocity v of the particle is represented by equation $\mathrm{v}(\mathrm{t})=\mathrm{f}(\mathrm{t})$. Find the acceleration of the particle at $t=\frac{5}{2}$. Is the velocity of the particle increasing, decreasing, or neither. Justify your answer.

