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1) For the function g(x) = { #t
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AP Calculus AB Final Exam Free Response Review Problems
¥ Contin w _conditions
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a) Use limits to show that g(x) is discontinuous at x = 1 and state why it is discontinuous there.
b) Determine if the discontinuity is removable or non-removable and state why.
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write an equation of the tangent line to the curve y =+/3x~1 at that point
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3) Liquid is being poured into a large Vat After ¢ hours, the amount of gallons of liquid in the vat can be

represented by V(¢) =5t - NS

eTween ""’ ’J‘S
shpe f‘ee?((‘p

a) What is the av a ¢ rate of li oured into the vat over the first 4 hours (¢ =0to ¢t = 4)?
(Include units ST measure)

b) At what rate is the liquid being poured into the vat when 7= 4? (Include units of measure)
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/ 4) A ball is thrown straight up in the air from a point 64 feet above ground level so that its position
/ function is 4(¢) = —16¢* +48¢+64 , where ¢ is measured in seconds. Use this to answer the following

lnaa.

a) What is the height of the ball at £ =27

h(2)=-1¢(a)+4802)+ (4
= =64+ 96+ €Y

=[9C feef-i

¢) When does the ball reach its greatest height?
K Rall resches hihest poit when V(3 ) -
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-32¢+4y=0

—32¢ =-4§¢

€) At what time is the ball falling at a speed
of 48 feet per second?

¥sol V[‘O = -4y
~32t+4 g =-4%
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g) With what velocity does the ball hit the ground?

¥hall by ‘fsjm«mj % . €= l—f
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1) What is the ball’s acceleration at £ = 2?

d[&): -32 & ot

| }) questions. Include units with all answers. l\ ( {) - -/ é{" +4 §¢ + 6 4
TN V(t)=32¢ +4§
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b) What is the velocity at # = 2?
V(2)= -32(2)+4t§
T -C4+4y
d) What is the greatest height?
/\(3/2) = “/6(7/4) +4y[34+6(f
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f) At what time does the ball hit the
goutd? Lot/ hits gromd chen hK)=

M4 4484464 =0
-t 3¢ -4) =0
M) (ee)=0 | t=4sec|

t=4, -1
h) What is tife ball’s average
velocity from- ¢ =0to =27
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j) Is the speed increasing or
decreasing at 1 = 27

v(2) = -§ «C+/5 4(52)'*-—32?*/2
Since V(3) and 4[&) hare same
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5) Let fbe the function defined by f(x) = xe"! = for all real numbers x.

N ~X X
),/3 a) Find each interval on which f'is increasing. Justify your answer. )ﬁ',’:‘o Xe = :!7.', =~ 0
/7 X b) Find the range of /. -
J.,& ¢) Find the each point of inflection of the graph of /. Justify your answer. I,'M Xe X

‘: e\ d) Using the results found in parts a, b, and c, sketch the graph of /" X900 =T
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6) To the right is the graph of g '(x), the derivative of a 4 of.
continuous function, g. The domain of g is [-3, 4], the range y=g'(%) ‘;1 pe
; of g is [-3, 2], and g(-3) =-2, g(0) =0, and g(2) = 1. y
” , : ' NN
! rl?J- x’
Find the following. Justify your answers. . S"’f‘e
a) interval(s) where g is increasing b) interval(s) where g is concave down
¢) x-coordinate of each rel. min d) x-coordinate of each pt. of inflection

¢) Sketch the graph of the function y = g(x)
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7) Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour. Ship B is
traveling due north away from Lighthouse Rock at a speed of 10 kilometers per hour. Let x be the
distance between & Ship A and Lighthouse Rock at time 7, and let y be the distance between Ship B and
Lighthouse Rock at time 7, as shown in the figure above.

a) Find the distance, in kilometers, between Ship A and Ship B when x = 4 km and
y=3km.
b) Find the rate of change, in kilometers per hour, of the distance between the two ships when x = 4

kmand y =3 km.
c) Let 6 be the angle shown in the figure. Find the rate of change of 6, in radians per hour, when x =

4 km and y = 3 km.
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