AB-3 / BC-3

1999

3. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period.

Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time t, 0 < t < 24, such that R'(t) = 07 Justify your answer.

The rate of water flow R(t) can be approximated by $Q(t) = \frac{1}{79} \left(768 + 23t - t^2\right)$. Use Q(t) to approximate the average rate of water flow during the 24-hour time period. Indicate units of measure.

c) Approximate R'(18)

t	R(t)
(hours)	(gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

The figure above shows the graph of f^{\prime} , the derivative of the function f, for $-7 \le x \le 7$. The graph of f' has horizontal tangent lines at x = -3, x = 2, and x = 5, and a vertical tangent line at x = 3.

- (a) Find all values of x, for -7 < x < 7, at which fattains a relative minimum. Justify your answer.
- (b) Find all values of x, for -7 < x < 7, at which f attains a relative maximum. Justify your answer.
- (c) Find all values of x, for -7 < x < 7, at which f''(x) < 0.

 (At what value of x, for $-7 \le x \le 7$, does fixed point(x) of inflection? Justify.

Mano is standing 25 feet from the launch pad of a hot air ballson if the balloon is rising at the rate of 20 ft/min, how will the angle between Mario's eve and the balloon be changing after 5 minutes?

1989 AB5

Note: This is the graph of the derivative of f, not the graph of f.

The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \le x \le 10$.

- (a) For what values of x does the graph of f have a horizontal tangent?
- (b) For what values of x in the interval (-10,10) does f have a relative maximum? Justify your answer.
- (c) For value of x is the graph of f concave downward?
- d) For what value of x does the graph of f have point(s) of inflection?

AB-3 / BC-3

1999

3. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period.

Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer.

The rate of water flow R(t) can be approximated by $Q(t) = \frac{1}{79} \left(768 + 23t - t^2 \right).$ Use Q(t) to approximate the average rate of water flow during the 24-hour time period. Indicate units of measure.

c) Approximate R'(18)

b) Rolle's theorem applies since
i) R(t) is continuous on [Q, 24]
ci) R(t) is differentiable on (0,24)
ci) R(o) = R(24) = 9.6
Therefore r'(t) = 0
Question 3

t _i	R(t)
(hours)	(gallons per hour)
O	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6
	`

(18)
$$\approx \frac{R(21) - R(18)}{21 - 18} = \frac{10.2 - 10.7}{21 - 18}$$

$$= \left[\frac{-1}{6} \frac{g \, d \log^3 / h^2}{24 - 21}\right]$$
or $\frac{R(24) - R(21)}{24 - 21}$

3)

AP Calculus AB-3

The figure above shows the graph of f', the derivative of the function f, for $-7 \le x \le 7$. The graph of f' has horizontal tangent lines at x = -3, x = 2, and x = 5, and a vertical tangent line at x = 3.

(a) Find all values of x, for -7 < x < 7, at which f attains a relative minimum. Justify your answer.

(b) Find all values of x, for -7 < x < 7, at which f attains a relative maximum. Justify your answer.

(c) Find all values of x, for -7 < x < 7, at which f''(x) < 0.

- b) Relative max at x=-5 b/c f'changes from + to a) Relative min at x=-1 b/c f'changes from -to +
- c) concave down (-7,-3) V(2,5) 6/c f"(x) <0

d) POI at X=-3, 2,5 since f'(x) change signs.

2000

Mario is standing 25 feet from the launch pad of a hot air balloon. If the balloon is rising at the rate of 20 ft/min, how will the angle between Mario's eve and the balloon be changing after 5 minutes?

ot air balloon. If the balloon is rising at the rate of
$$\frac{d\theta}{dt} = (\cos \theta)^2 \cdot \frac{1}{25} \cdot \frac{dy}{dt}$$

0 ft/min, how will the angle between Mario's eye and the balloon be changing after 5 minutes?
$$= \left(\frac{25}{\sqrt{10625}}\right)^2 \cdot \frac{1}{25} \cdot 20$$

$$\cos \theta = \frac{25}{\sqrt{10625}} \cdot \frac{1}{25} \cdot$$

$$\frac{dy}{dt} = 20 \text{ ft/min} \\ y = 100 + 5 \times 20 = 100$$
 = $\sqrt{10625}$

$$\frac{25}{\sqrt{10625}} \quad tan \theta = \frac{y}{25}$$

$$\frac{1}{\sqrt{10625}} \quad tan \theta = \frac{1}{25} y$$

$$\frac{1}{25} \quad tan \theta = \frac{1}{25} y$$

$$\frac{1}{25} \quad tan \theta = \frac{1}{25} y$$

$$\frac{1}{25} \quad tan \theta = \frac{1}{25} (\frac{dy}{dt})$$

$$\frac{1}{25} \quad \frac{d\theta}{dt} = \frac{1}{25} (\frac{dy}{dt})$$

$$\frac{1}{25} \quad \frac{d\theta}{dt} = \frac{1}{25} (\frac{dy}{dt})$$

$$\frac{d\theta}{dt} = \frac{25^2}{10625} \cdot \frac{20}{25} = \frac{4}{85}$$

$$\frac{db}{dt} = \frac{4}{85} \, \text{rad/min}$$

The figure above shows the graph of f', the derivative of a function f. The domain of fis the set of all real numbers x such that $-10 \le x \le 10$.

- (a) For what values of x does the graph of f have a horizontal tangent?
- (b) For what values of x in the interval (-10,10) does f have a relative maximum? Justify your answer.
- (c) For value of x is the graph of f concave downward?

d) For what value of x does the graph of f have point(s) of inflection?