AB/BC Theater Extra Credit Spring 2014 Assignment #1.

Directions: answer the followmgS' FRQs, make correctlons (red ink) and

score FRQs. Due Fr{ ( 3/ 0’27) (71‘{7‘ 6’r>
m 1) (Célculator FRQ) '

t (minntes) 0 4 8 12 16
H{r) (°O) 65 68 73 80 80

The temperature, in degrees Celsins (°C), of an oven being heated is modeted by an increasing differentiable
function H of time 7, where ¢ is measured in minutes. The table above gives the temperature as recorded every
4 minutes over & 16-minnte peried, .
{a) Use the data in the table to estimate the instantancous rate at which the temperatiure of the oven is changing
at fime ¢ = 10, Show the compuiations that lead to your answer, Indicate units of measure, s
{b) Write an infegral expression in terms of H for the average temperatare of the oven between time # = 0 and
time + =16. Bstimate the average temperatare of the oven using a left Riemann sum with four subintervale
of equal length, Show the computations that lead to your answer, -
(¢) Is your approximation in part (b) an ynderestimaie or an ‘overestimate of the average temperature? Give a
- reason for your answer.

(d) Are the data in the table nonmsmnswnhwdoth&ymtmdmt thenlmmﬂlattlmtempcmmrenftha ovenis
increasing at an increazing rafe? Give a reason for your answer.

@



Free-Response

A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION
DURING THE TIMED PORTION FOR PART B, YOU MAY GO BACK AND CONTINUE TO WORK
C /)/ ca Ic ugﬂl@ ON THE PROBLEMS IN PART A WITHOUT THE USE OF A CALCULATOR ..
on- _

09 Corisider the differential equation % = ( ?4)

(a) On the axes provided, sketch a slope field for the given dlfferennal equation at the o
- fourteen points indicated.

(b) Sketch the solution curve that contains the | pomt (-2,2). 4 |
(¢) Find a general SOhlthll to the differential equatiion ‘

A
(d) Find the particular solutnon to the differential equation that satisfies the initial condmon _ (
y(()) 4. e e (‘
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(Won-calbdato )~

on the closed interval [-4, 4] is shown - fovi
at the right. The graph of f has . 2
‘horizonfal tangents at x=-3,~1and 2. - I\ AT TN
x . . - RENE TR SR E R O ik
Let G(x) = [ f() d for ~4< x <4, TR N
o . 2l 1
(a) Find G(-4). ; : 3

The graph of a differentiable function f . gmphof f
, s

(b) Find G'(-1).

- (¢) Onwhich interval or intervals is the graph of G concave down Jusufy your answer.
()~ Find the valie of x at whnch G has its maximum on the cloéed mterval [-4,4].. Jnsufy e

your answer.




4) N\ on —&«ﬂ wfﬂ\'fo v Question 4

Let R be the region in the first quadrant enclosed by the graphs of ¥ = 2x and

y= 3;'2(, as shown in the figure above.

{ay Find the area of R.

(b} The region R is the base of a solid. For this solid, at each ¥ the cross
section perpendicular to the x-axis has area A{x) = sin (%x) Find the
volume of the solid.

(¢} Another solid has the same base R. For this solid, the cross sections
perpendicular to the y-axis are squares. Write, but do not evaluate, an

integral expression for the volume of the solid.




5) (\}?Y\ - C&OQL uﬂa.'}’mf Question 5

The figure above shows the graph of J', the derivative of a
twice-differentiable function f, on the interval [-3, 4]. The
graph of [ has horizontal tangents at x = -1, x =1, and
x = 3. The areas of the regions bounded by the x-axis and
the graph of f* on the intervals [-2, 1] and [1, 4] are 9 and
12, respectively.
{a) Find all x-coordinates at which f has a relative
maximum. Give a reason for your answer.

{b} Onwhat open intervals contained in -3 < x < 4 isthe
graph of f both concave down and decreasing? Give a
reason for your angwer,

Ciraphiof f*

{c) Find the x-coordinates of all points of inflection for the graph of £ Give a reason for your answer.
{d) Giventhat j(1) = 3, write an expression for f{x) that involves an integral. Find f(4) and f(-2}.
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rree-response

A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION. .
DURING THE TIMED PORTION FOR PART B, YOU MAY GO BACK AND CONTINUE TO WORK
( Mo cale JA@ ON THE PROBLEMS IN PART A WITHOUT THE USE OF A CALCULATOR. o
on- . _ - A

P o .'.'_. A .' . . dy_< '
09 Consider the differential equation ;-Fﬁﬁ

P || (@) On the axes provided, sketch a slope field for the given differential equation at the
= L urtoen points idiceied S T |
1 | | (b) Sketch the sohition curve that contains the point (-2, 2).

@ (c) Find a general solution to the differential equitiion. ,

(d) Find the particular solution to the differential equation that satisfies the initial condition

y0)=4.
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(/VO"’M@J&'#\(> T T f | _ A'Free-Résponse

@ Thegraphofadnfferennablefuncnonf S ~ graphof f

on the closed interval [-4 4]. is shown 3
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LetG(x)-jf(t)dt for-4<xs4 T NG T
E @ Find G(-4). ; : o,

4 (®) Find G'(-1). - | i
(c) On which interval or mtexvals is the graph of G concave down Jusnfy your answer

your answer.
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Lf) Non-Cul cw&fov Question 4

Let R be the region in the first quadrant enclosed by the graphs of y = 2x and )
y= x%, as shown in the figure above.

(a) Find the area of R.
{b) The region R is the base of a solid. For this solid, at each x the cross

section perpendmular to the x-axis has area A(x) = am(uz-«x) Find the

volume of the solid.
(c) Another sclid has the same base R. For this solid, the cross sections

perpendicular to the y-axis are squares. Write, but do not evaluate, an
integral expression for the volume of the solid.

ﬁf/[{n‘ﬁ;m

) |
AN«’A:J“ o?x-—xiaﬂx — ‘%Z_ K
o

i
RO
{

=
Z\&
S
"
A
3
¥l
o,
Ti
+
) W) o w]?\&
1 1
w|S
!
Wleft
(1

&]ﬁﬂfi | base

)(:.JE;-« o 2 2 0
X = /:2. AY?M.-[A&SC] j:é}t{? ’J-v_,

4(&:[J3~é]2

I
54




5-) /l/on - (2{/ («/«fby- Question 5

The figure above shows the graph of j, the derivativeofa ¥
twice-differentiable function f, on the interval [-3, 4]. The
graph of f has horizontal tangents at x = ~1, x =1, and /[
x = 3. The areas of the regions bounded by the x-axis and
the graph of /' on the intervals [-2, 1] and (1, 4] are 9 and
12, respectively.

(2) Find all x-coordinates at which / has a relative EEENE L ZE
maximum. Give a reason for your answer. ’ I x/

{b} On what open intervals contained in —3 < x < 4 isthe Grashof 1
graph of f both concave down and decreasing? Give a b o |
-reason for your answer,

{c} Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that f (l) 3, write an expression for f{(x) that involves an integral. Find f(4) and f(-2).
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