Additional BC Optimization HW Problems WS \#3

Maximum Area A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area when the total perimeter is 16 feet.

33. Minimum Surface Area A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the solid is 14 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area.

Maximum Area A rectangle is bounded by the x - and y-axes and the graph of $y=(6-x) / 2$ (see figure). What length and width should the rectangle have so that its area is a maximum?

Figure for 22
21. $16=2 y+x+\pi\left(\frac{x}{2}\right)$

$$
\begin{aligned}
32 & =4 y+2 x+\pi x \\
y & =\frac{32-2 x-\pi x}{4}
\end{aligned}
$$

$$
A=x y+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\left(\frac{32-2 x-\pi x}{4}\right) x+\frac{\pi x^{2}}{8}=8 x-\frac{1}{2} x^{2}-\frac{\pi}{4} x^{2}+\frac{\pi}{8} x^{2}
$$

$$
\frac{d A}{d x}=8-x-\frac{\pi}{2} x+\frac{\pi}{4} x=8-x\left(1+\frac{\pi}{4}\right)=0 \text { when } x=\frac{8}{1+(\pi / 4)}=\frac{32}{4+\pi} .
$$

$$
\frac{d^{2} A}{d x^{2}}=-\left(1+\frac{\pi}{4}\right)<0 \text { when } x=\frac{32}{4+\pi} .
$$

$$
y=\frac{32-2[32 /(4+\pi)]-\pi[32 /(4+\pi)]}{4}=\frac{16}{4+\pi}
$$

The area is maximum when $y=\frac{16}{4+\pi} \mathrm{ft}$ and $x=\frac{32}{4+\pi} \mathrm{ft}$.

33. $V=14=\frac{4}{3} \pi r^{3}+\pi r^{2} h$

$$
h=\frac{14-(4 / 3) \pi r^{3}}{\pi r^{2}}=\frac{14}{\pi r^{2}}-\frac{4}{3} r
$$

$$
S=4 \pi r^{2}+2 \pi r h=4 \pi r^{2}+2 \pi r\left(\frac{14}{\pi r^{2}}-\frac{4}{3} r\right)=4 \pi r^{2}+\frac{28}{r}-\frac{8}{3} \pi r^{2}=\frac{4}{3} \pi r^{2}+\frac{28}{r}
$$

$$
\frac{d S}{d r}=\frac{8}{3} \pi r-\frac{28}{r^{2}}=0 \text { when } r=\sqrt[3]{\frac{21}{2 \pi}} \approx 1.495 \mathrm{~cm}
$$

$$
\frac{d^{2} S}{d r^{2}}=\frac{8}{3} \pi+\frac{56}{r^{3}}>0 \text { when } r=\sqrt[3]{\frac{21}{2 \pi}}
$$

The surface area is minimum when $r=\sqrt[3]{\frac{21}{2 \pi}} \mathrm{~cm}$ and $h=0$.
The resulting solid is a sphere of radius $r \approx 1.495 \mathrm{~cm}$.

You can see from the figure that $A=x y$ and $y=\frac{6-x}{2}$.

$$
A=x\left(\frac{6-x}{2}\right)=\frac{1}{2}\left(6 x-x^{2}\right) .
$$

$$
\frac{d A}{d x}=\frac{1}{2}(6-2 x)=0 \text { when } x=3
$$

$$
\frac{d^{2} A}{d x^{2}}=-1<0 \text { when } x=3 .
$$

A is a maximum when $x=3$ and $y=3 / 2$.

