AMC Practice Problems from AMC 12B 2011 Exam

8. Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has width 6 meters, and it takes her 36 seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko's speed in meters per second?

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) π (D) $\frac{4\pi}{3}$

- 10. Rectangle ABCD has AB = 6 and BC = 3. Point M is chosen on side AB so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?
 - (A) 15
- **(B)** 30
- (C) 45
- (D) 60
- (E) 75

12. A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is the probability that the dart lands within the center square?

- (A) $\frac{\sqrt{2}-1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{2-\sqrt{2}}{2}$

- 13. Brian writes down four integers w > x > y > z whose sum is 44. The pairwise positive differences of these numbers are 1, 3, 4, 5, 6, and 9. What is the sum of the possible values for w?
 - (A) 16
- (B) 31
- (C) 48
- (D) 62
- (E) 93

- 15. How many positive two-digit integers are factors of $2^{24} 1$?
 - (A) 4
- (B) 8
- (C) 10
- (D) 12
- **(E)** 14

- 16. Rhombus ABCD has side length 2 and $\angle B = 120^{\circ}$. Region R consists of all points inside the rhombus that are closer to vertex B than any of the other three vertices. What is the area of R?

- (A) $\frac{\sqrt{3}}{3}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $1 + \frac{\sqrt{3}}{3}$ (E) 2