Calculus AB 2020 Mock AP Exam \#3

1) Related Rates Assorted Problems $\mathbf{2 5}$ minutes $\mathbf{1 5}$ points
a) A person stands 40 feet from point Q and watches the balloon rise vertically from point Q. The balloon is rising at a constant rate of 3 feet per second. What is the rate of change, in radians per second, of angle θ at the instant when the balloon is 30 feet above the point.

b) Bikes A and B are traveling on perpendicular roads. At the same time, bike A is leaving the intersection at a rate of 2 feet per second and bike B is leaving the intersection at 3 feet per second. How fast is the distance, in feet per second, between them changing after 5 seconds?
c) A person 2 meters tall walks directly away from a streelight that is 8 meters above the ground. If the person is walking at a constant rate and the person's shadow is lengthening at the rate of $\frac{4}{9}$ meters per second: i) at what rate, in meters per second, is the person walking? ii) the rate at which the tip of the shadow is moving?
d) A beach ball is deflating at a constant rate of 10 cubic centimeters per second. When the volume of the ball is $\frac{256}{3} \pi$ cubic centimeters, what is the rate of change of the surface area? ($S=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$)
2) $\mathbf{1 5}$ minutes 9 points

The figure to the right shows graph of f^{\prime}, the derivative of the function f, for $-4 \leq x \leq 5$. The graph of f^{\prime} has horizontal tangent lines at $x=-3,-1,1$, and 4 .

a) Find all the value of x , for $-4 \leq \mathrm{x} \leq 5$ for which f is increasing. Justify your answer.
b) Find all the value of x, for $-4 \leq x \leq 5$ for which f has a relative maximum. Justify answer.
c) Find all the value of x , for $-4 \leq \mathrm{x} \leq 5$, for which the graph of f is concave down.
d) Given $\mathrm{f}(-4)=-2, \mathrm{f}(0)=5$, and $\mathrm{f}(5)=8$, sketch a possible graph of $f(x)$ on the axes below.
e) Sketch a possible graph of $f^{\prime \prime}(\mathrm{x})$ on the axes below.
d) $f(x)$

e) $f^{\prime \prime}(x)$

