"AP Live" Calculus AB Cumulative Course Review WS

Unit 1: Limits

1) Use Continuity Conditions to answer and justify the below question:

Is $f(x)=\left\{\begin{array}{c}\cos x, x<0 \\ x^{2}+1, x \geq 0\end{array} \quad\right.$ continuous at $x=0$?
2) The function f is continuous at $x=1$.

$$
\text { If } f(x)= \begin{cases}\frac{\sqrt{x+3}-\sqrt{3 x+1}}{x-1} & \text { for } x \neq 1 \\ k & \text { for } x=1\end{cases}
$$

$$
\text { then } k=
$$

Unit 2-3: Derivatives / Derivatives of Composites

3) Given $h(x)=g(f(x))$
$h^{\prime}(2)=$

4) Find $h^{\prime}(1)$ given $h(x)$

$$
h(x)=\frac{k(x)}{3 x}
$$

x	-1	1
$k(x)$	-3	2
$k^{\prime}(x)$	4	-5

5) $f(x)=\tan ^{2}\left(3 x^{2}\right), f^{\prime}(x)=$?
6) Given that $p(x)=\sqrt[3]{2 x-1}$ find $\left[p^{-1}\right]^{\prime}(5)$.
7) If $y^{2}-3 x=7$, then find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y
8) The function f is defined on all the reals such that $f(x)=\left\{\begin{array}{cc}x^{2}+k x-3 & \text { for } x \leq 1 \\ 3 x+b & \text { for } x>1\end{array}\right.$

For which of the following values of k and b will the function f be both continuous and differentiable on its entire domain?
9) If $y=e^{k x}$, then $\frac{d^{5} y}{d x^{5}}=$
10) Consider the function $f(x)=\frac{6 x}{a+x^{3}}$ for which $f^{\prime}(0)=3$

Find the value of a.

Unit 4: Contextual Application of Differentiation

11) The positive variables \mathbf{b} and \mathbf{h} change with respect to time t. The relationship between b and h is given by the equation $h^{3}=(4-2 b)^{2}$. At the instant when $\frac{d b}{d t}=3$ and $\mathrm{h}=4$, what is the value of $\frac{d h}{d t}$?
12) Determine $\frac{d z}{d t}$ if you know that $z=x y^{2}, z=3, y=\frac{1}{2}, \frac{d x}{d t}=-2$, and $\frac{d y}{d t}=5$.
13) The approximate value of $y=\sqrt{3+e^{x}}$ at $x=0.08$, obtained from the tangent line to the graph at $\mathrm{x}=0$ is
14) The Function $C(x)$ gives the dollar cost of digging a hole x feet deep.
$C(\mathbf{2 0})=\mathbf{1 4 0}$ means that a hole \qquad deep costs \qquad to dig. $\boldsymbol{C}^{\prime}(\mathbf{2 0})=\mathbf{5}$ means that when the hole is \qquad , the cost of digging is \qquad at a rate of \qquad .

Unit 5: Analytic Applications of Derivative

15) Let $f(x)=x^{4}+a x^{2}+b$. The graph of f has a relative maximum at $(0,1)$ and an inflection point when $x=1$. The values of a and b are:
16) The $f^{\prime}(x)$ graph is shown. Answer the following:
a) Find the x-value where absolute minimum occurs
b) Find the x-value where the absolute maximum occurs

c) Sketch a possible $f(x)$ graph given that $f(0)=-2$. (below)
d) Sketch a possible f " (x) graph (below)

17) The table below gives selected values for the differentiable function g.

x	0	2	6	8	11	12
$\mathrm{~g}(\mathrm{x})$	-4	5	2	5	10	20

a) What's the least number of times $g(x)=3$ in the given interval above? Justify your answer.
b) What can be concluded with Mean Value Theorem on the interval [0, 12]?
c) Can Rolle's Theorem be applicable in the interval [2, 8]? Justify your answer.
18) The function g is differentiable and increasing for all real numbers x, and the graph of f has exactly 2 points of inflections. Of the following, which could be the graph of g^{\prime}, the derivative of g ?

D)

B)

E)

Unit 6: Integration and Accumulation of Change

19) Let f be the function defined by $f(x)=\int_{0}^{x}\left(2 t^{3}-15 t^{2}+36 t\right) d t$. On which of the following interval is the graph of $y=f(x)$ concave down?

20) a) The graph of the piecwise linear function f is shown. What is the value of $\int_{-4}^{8} f(x) d x$?
b) The graph of the piecwise linear function f is shown. What is the value of $\int_{-4}^{8} f^{\prime}(x) d x$?
c) The graph of the piecwise linear function f is shown. What is the value of $\int_{-3}^{7} f^{\prime \prime}(x) d x$?
21) Let f and g be continuous function such that $\int_{0}^{8} f(x) d x=12, \int_{0}^{8} 2 g(x) d x=4$,
and $\int_{5}^{8}(f(x)-g(x)) d x=3$. What is the value of $\int_{0}^{5}(f(x)-g(x)) d x$
22) The function f is continuous and $\int_{0}^{8} f(u) d u=6$. What is the value of $\int_{1}^{3} x f\left(x^{2}-1\right) d x$?
23) If $\int_{0}^{b}\left(4 b x-2 x^{2}\right) d x=36$, then $b=$
24) If $\int_{-2}^{2}\left(x^{7}+k\right) d x=16$, then $k=$

Unit 7: Differentiation Equations

25) Consider the differential equation $\frac{d y}{d x}=\left(1-\frac{4}{x^{3}}\right)(y-1)^{2}$. Let $y=f(x)$ be the particular solution to the differential equation with initial condition $f(2)=-1$. Find $f(1)$.
