"AP Live" Calculus AB Cumulative Course Review WS

Unit 1: Limits

1) Use Continuity Conditions to answer and justify the below question:

Is
$$f(x) = \begin{cases} \cos x, x < 0\\ x^2 + 1, x \ge 0 \end{cases}$$
 continuous at $x = 0$?

2) The function f is continuous at x = 1.

If
$$f(x) = \begin{cases} \frac{\sqrt{x+3} - \sqrt{3x+1}}{x-1} & \text{for } x \neq 1 \\ k & \text{for } x = 1 \\ & \text{then } k = \end{cases}$$

Unit 2-3: Derivatives / Derivatives of Composites

3) Given
$$h(x) = g(f(x))$$

 $h'(2) =$

 $f(x)$

 $f(x)$

5) $f(x) = \tan^2(3x^2)$, f'(x) = ?

6) Given that $p(x) = \sqrt[3]{2x-1}$ find $[p^{-1}]'(5)$.

7) If
$$y^2 - 3x = 7$$
, then find $\frac{d^2y}{dx^2}$ in terms of x and y

8) The function f is defined on all the reals such that $f(x) = \begin{cases} x^2 + kx - 3 & \text{for } x \le 1 \\ 3x + b & \text{for } x > 1 \end{cases}$

For which of the following values of k and b will the function f be both continuous and differentiable on its entire domain?

9) If
$$y = e^{kx}$$
, then $\frac{d^5y}{dx^5} =$

10) Consider the function $f(x) = \frac{6x}{a+x^3}$ for which f'(0) = 3

Find the value of a.

Unit 4: Contextual Application of Differentiation

11) The positive variables **b** and **h** change with respect to time t. The relationship between b and h is given by the equation $h^3 = (4 - 2b)^2$. At the instant when $\frac{db}{dt} = 3$ and h = 4, what is the value of $\frac{dh}{dt}$?

12) Determine $\frac{dz}{dt}$ if you know that $z = xy^2$, z = 3, $y = \frac{1}{2}$, $\frac{dx}{dt} = -2$, and $\frac{dy}{dt} = 5$.

13) The approximate value of $y = \sqrt{3 + e^x}$ at x = 0.08, obtained from the tangent line to the graph at x = 0 is

14) The Function C(x) gives the dollar cost of digging a hole x feet deep.

C(20) = 140 means that a hole ______ deep costs ______ to dig.

C'(20) = 5 means that when the hole is ______, the cost of digging is ______ at

a rate of _____.

Unit 5: Analytic Applications of Derivative

15) Let $f(x) = x^4 + ax^2 + b$. The graph of f has a relative maximum at (0,1) and an inflection point when x = 1. The values of a and b are:

- **16**) The f'(x) graph is shown . Answer the following:
- a) Find the x-value where absolute minimum occurs

b) Find the x-value where the absolute maximum occurs

- c) Sketch a possible f(x) graph given that f(0) = -2. (below)
- d) Sketch a possible f "(x) graph (below)

17) *The table below gives selected values for the differentiable function g.*

Х	0	2	6	8	11	12
g(x)	-4	5	2	5	10	20

a) What's the least number of times g(x) = 3 in the given interval above? Justify your answer.

b) What can be concluded with Mean Value Theorem on the interval [0, 12]?

c) Can Rolle's Theorem be applicable in the interval [2, 8]? Justify your answer.

18) The function g is differentiable and increasing for all real numbers x, and the graph of f has exactly 2 points of inflections. Of the following, which could be the graph of g', the derivative of g?

Unit 6: Integration and Accumulation of Change

19) Let f be the function defined by $f(x) = \int_0^x (2t^3 - 15t^2 + 36t) dt$. On which of the following interval is the graph of y = f(x) concave down?

20) a) The graph of the piecwise linear function f is shown. What is the value of $\int_{-4}^{8} f(x)dx$? b) The graph of the piecwise linear function f is shown. What is the value of $\int_{-4}^{8} f'(x)dx$?

c) The graph of the piecwise linear function f is shown. What is the value of $\int_{-3}^{7} f''(x) dx$?

21) Let f and g be continuous function such that
$$\int_{0}^{8} f(x)dx = 12$$
, $\int_{0}^{8} 2g(x)dx = 4$,
and $\int_{5}^{8} (f(x) - g(x))dx = 3$. What is the value of $\int_{0}^{5} (f(x) - g(x))dx$

22) The function f is continuous and
$$\int_{0}^{8} f(u)du = 6$$
. What is the value of $\int_{1}^{3} xf(x^{2}-1)dx$?

23) If
$$\int_{0}^{b} (4bx - 2x^2) dx = 36$$
, then $b =$
24) If $\int_{-2}^{2} (x^7 + k) dx = 16$, then $k =$

Unit 7: Differentiation Equations

25) Consider the differential equation $\frac{dy}{dx} = \left(1 - \frac{4}{x^3}\right)(y-1)^2$. Let y = f(x) be the particular solution to the differential equation with initial condition f(2) = -1. Find f(1).