Calculus AB Course Review: Unit 6 Differential Equations MC WS #1

- 1. If a(t) = 4t - 1 and v(1) = 3, then v(t) equals
- (A) $2t^2 t$ (B) $2t^2 t + 1$ (C) $2t^2 t + 2$
- $2t^2 + 1$
- (E) $2t^2 + 2$

- 2. If $\frac{dy}{dx} = \frac{y}{2\sqrt{x}}$ and y = 1 when x = 4, then
 - (A) $y^2 = 4\sqrt{x} 7$ (B) $\ln y = 4\sqrt{x} 8$ (C) $\ln y = \sqrt{x 2}$

- **(D)** $y = e^{\sqrt{x}}$ **(E)** $y = e^{\sqrt{x}-2}$

- If $\frac{dy}{dx} = e^y$ and y = 0 when x = 1, then 3.

 - (A) $y = \ln |x|$ (B) $y = \ln |2 x|$ (C) $e^{-y} = 2 x$
 - **(D)** $y = -\ln |x|$ **(E)** $e^{-y} = x 2$

4. If
$$\frac{dy}{dx} = \frac{x}{\sqrt{9 + x^2}}$$
 and $y = 5$ when $x = 4$, then y equals

(A)
$$\sqrt{9+x^2}-5$$

(B)
$$\sqrt{9+x^2}$$

(C)
$$2\sqrt{9+x^2}-5$$

(A)
$$\sqrt{9+x^2}-5$$
 (B) $\sqrt{9+x^2}$ (C) $2\sqrt{9+x^2}-5$ (D) $\frac{\sqrt{9+x^2}+5}{2}$ (E) none of these

5. Which differential equation has the slope field shown?

$$(\mathbf{A}) \quad y' = y(y+2)$$

(B)
$$y' = x(y+2)$$

$$(\mathbb{C}) \quad y' = xy + 2$$

$$\mathbf{(D)} \quad \mathbf{y'} = \frac{x}{y+2}$$

$$(\mathbb{E}) \quad y' = \frac{y}{y+2}$$

6. Which function is a possible solution of the slope field shown?

$$(\mathbf{A}) \quad y = 1 - \frac{1}{x}$$

$$(B) y = 1 - \ln x$$

(C)
$$y = 1 + \ln x$$

(D)
$$y = 1 + e^x$$

(E)
$$y = 1 + \tan x$$

- A cup of coffee at temperature 180°F is placed on a table in a room at 68°F. The. **7.** d.e. for its temperature at time t is $\frac{dy}{dt} = -0.11(y - 68)$; y(0) = 180. After 10 min the temperature (in °F) of the coffee is
 - (A) 96
- **(B)** 100
- (\mathbb{C}) 105
- (D) 110
- (E) 115

- Solutions of the differential equation y dy = x dx are of the form 8.
 - (A) $x^2 y^2 = C$ (B) $x^2 + y^2 = C$ (C) $y^2 = Cx^2$
- **(D)** $x^2 Cy^2 = 0$ **(E)** $x^2 = C y^2$

- 9. The solution curve of y' = y that passes through point (2, 3) is

 - (A) $y = e^x + 3$ (B) $y = \sqrt{2x + 5}$
- (C) $y = 0.406e^x$
- (D) $y = e^x (e^2 + 3)$ (E) $y = e^x/(0.406)$

According to Newton's law of cooling, the temperature of an object decreases at a 10. rate proportional to the difference between its temperature and that of the surrounding air. Suppose a corpse at a temperature of 32°C arrives at a mortuary where the temperature is kept at 10° C. Then the differential equation satisfied by the temperature Tof the corpse t hr later is

(A)
$$\frac{dT}{dt} = -k(T - 10)$$
 (B)
$$\frac{dT}{dt} = k(T - 32)$$
 (C)
$$\frac{dT}{dt} = 32e^{-kt}$$

(D)
$$\frac{dT}{dt} = -kT(T-10)$$
 (E) $\frac{dT}{dt} = kT(T-32)$

11. If the corpse in Question 51 cools to 27°C in 1 hr, then its temperature (in °C) is given by the equation

(A)
$$T = 22e^{0.205t}$$

(B)
$$T = 10e^{1.163t}$$

(B)
$$T = 10e^{1.163t}$$
 (C) $T = 10 + 22e^{-0.258t}$
(E) $T = 32 - 10e^{-0.093t}$

(D)
$$T = 32e^{-0.169t}$$

$$(\mathbf{E}) \quad T = 32 - 10e^{-0.093}$$