| Accelerated Pre-Calculus <br> January 2022 <br> Unit 5 - Matrices |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Monday | Tuesday | Wednesday | Thursday | Friday |
| Teacher Work Day | 4 Remote <br> 5.01 Introduction to Matrices <br> - Vocabulary <br> - Add, Subtract, \& Scalar <br> - Properties <br> HW: 5.01 Practice | 5 Remote <br> 5.02 Matrix <br> Multiplication <br> - Multiply <br> Matrices <br> - Properties <br> - Multiplicative Identity <br> - Verifying Inverses <br> HW: 5.02 Practice | 6 Remote <br> 5.02 Cont'd <br> More Practice with Matrix <br> Multiplication <br> HW: 5.02 Extra Practice | $7 \quad$ Remote <br> 5.03 Matrix <br> Inverses <br> - 2x2 matrices only <br> - Determinant <br> - Multiplicative Inverse <br> - Singular Matrix <br> HW: 5.03 Practice |
| 10 Matrix Operations Review | 11 Matrix Operations Review | 12 <br> 5.04 Matrix Ops Quiz | 13 <br> MAP Testing ( $9^{\text {th }}$ and $10^{\text {th }}$ graders only) | 14 MAP Testing ( ${ }^{\text {th }}$ and $10^{\text {th }}$ graders only) |
| $17$ <br> MLK Holiday | 18 <br> 5.05 Solving a 2X2 <br> System of Equations <br> - Review of Elimination <br> - Using a Matrix Equation to Solve <br> HW: 5.05 Practice | 19 <br> 5.06 Matrix Inverses <br> - $3 \times 3$ matrices only <br> - Determinant <br> - Multiplicative Inverse on calculator <br> HW: 5.06 Practice | 20 <br> 5.07 Solving a 3X3 <br> System of Equations <br> - Review of Elimination <br> - Using a Matrix Equation to Solve <br> HW: 5.07 Practice | 21 <br> 5.08 Applications with Matrices <br> HW: 5.08 Practice |
| 24 Early Release Day <br> Review | $\begin{aligned} & \hline 25 \\ & 5.11 \\ & \text { Review } \end{aligned}$ | $\begin{array}{\|l\|} \hline 26 \\ 5.12 \\ \text { Matrices Test } \\ \hline \end{array}$ | 27 | 28 |


| Properties of Matrix Addition |
| :--- |
| Given matrices A, B, C with the same dimensions |
| Commutative Property: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ |
| Associative Property: $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$ |
| Scalar Distributive Property: $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$ |

## Properties of Matrix Addition

Given matrices A, B, C with the same dimensions
Commutative Property: $A+B=B+A$
Associative Property: $A+(B+C)=(A+B)+C$
Scalar Distributive Property: $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$

## Properties of Matrix Multiplication

Given matrices A and B with the same inner dimensions

## Matrix Multiplication is not commutative

Associative Property: $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
Associative Property of Scalar Multiplication: $k(\mathrm{AB})=(k \mathrm{~A}) \mathrm{B}=\mathrm{A}(k \mathrm{~B})$

Identity matrix (I) $\quad A * I=I * A=A$
$2 \times 2$
$3 \times 3$
The product of two inverse matrices is equal to the identity matrix.
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
(A)\left(A^{-1}\right)=\left(A^{-1}\right)(A)=I
$$

Addition and Subtraction: matrices must have the same dimensions

$$
\begin{array}{cl}
\mathbf{A} & +\begin{array}{c}
\mathbf{B}
\end{array} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{cc}
e & f \\
g & h+\mathbf{B}
\end{array}\right]} & =\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]
\end{array} \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]
$$

Scalar Multiplication: for matrices of any dimension
Given matrix $\mathrm{M}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ then $k \mathrm{M}=\left[\begin{array}{lll}k a & k b & k c \\ k d & k e & k f\end{array}\right]$
Determinant: must be a square matrix

$$
2 \times 2 A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad 3 \times 3 \quad B=\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right] \text { repeat columns } \mathbf{1} \text { and } \mathbf{2}\left[\begin{array}{lllll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} & \mathrm{~d} & \mathrm{e} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{~g} & \mathrm{~h}
\end{array}\right]
$$

$\operatorname{det}(A)=|A|=a d-b c$
Now multiply and combine products according to the pattern.


$$
\operatorname{det}(B)=|B|=(a e i+b f g+c d h)-(c e g+a f h+b d i)
$$

Inverse: must be a square matrix. If $\operatorname{det}(A)=0$, then $A$ is a singular matrix (non-invertible).
For $2 \times 2$ find the inverse without a calculator. For matrices larger than $2 \times 2$ - find the inverse with an app.
Given matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $A^{-1}=\frac{1}{\operatorname{det}}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Solving a System of Equations:
$\left\{\begin{array}{c}\mathbf{C} \quad \mathbf{x} \mathbf{V}=\mathbf{A} \\ a x+b y=c \\ d x+e y=f\end{array}\right.$ written as a Matrix Equation: $\left[\begin{array}{ll}a & b \\ d & e\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c \\ f\end{array}\right] \quad$ Can be solved by: $\mathbf{V}=\mathbf{C}^{-1} \mathbf{A}$
where $\mathbf{C}$ is the Coefficient matrix, $\mathbf{V}$ is the Variable matrix, and $\mathbf{A}$ is the Answer matrix.

