Accelerated Pre-Calculus January 2023 Unit 5 - Matrices				
Monday	Tuesday	Wednesday	Thursday	Friday
2 Last Day of Winter Break	3 Teacher Work Day	4 5.01 Introduction to Matrices - Vocabulary - Add, Subtract, \& Scalar - Properties HW: 5.01 Practice	5 5.02 Matrix Multiplication - Multiply Matrices - Properties - Multiplicative Identity - Verifying Inverses HW: 5.02 Practice	6 5.02 Cont'd More Practice with Matrix Multiplication HW: 5.02 Extra Practice
9 5.03 Matrix Inverses - 2×2 matrices only - Determinant - Multiplicative Inverse - Singular Matrix HW: 5.03 Practice	10 5.04 Matrix Operations Review	11 5.04 Matrix Operations Review	$\begin{aligned} & 12 \\ & \text { 5.05 Matrix Ops } \\ & \text { Quiz } \end{aligned}$	13 5.06 Solving a 2 X 2 System of Equations - Review of Elimination - Using a Matrix Equation to Solve HW: 5.06 Practice
16 MLK Holiday	17 5.07 Matrix Inverses - 3x3 matrices only - Determinant - Multiplicative Inverse on calculator HW: 5.07 Practice	18 5.08 Solving a 3X3 System of Equations - Review of Elimination - Using a Matrix Equation to Solve HW: 5.08 Practice	19 5.09 Applications with Matrices HW: 5.09 Practice	20 5.10 Applications with Matrices Cont'd Finish 5.10
23 5.11 Review	$\begin{aligned} & \hline 24 \\ & 5.12 \\ & \text { Matrices Test } \end{aligned}$	25	26	27
Homework Keys:				

Properties of Matrix Addition
Given matrices A, B, C with the same dimensions
Commutative Property: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
Associative Property: $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
Scalar Distributive Property: $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$

Properties of Matrix Addition

Given matrices A, B, C with the same dimensions
Commutative Property: $A+B=B+A$
Associative Property: $A+(B+C)=(A+B)+C$
Scalar Distributive Property: $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$

Properties of Matrix Multiplication

Given matrices A and B with the same inner dimensions
Matrix Multiplication is not commutative
Associative Property: $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
Associative Property of Scalar Multiplication: $k(\mathrm{AB})=(k \mathrm{~A}) \mathrm{B}=\mathrm{A}(k \mathrm{~B})$

Identity matrix (I) $\quad A * I=I * A=A$
2×2
3×3
The product of two inverse matrices is equal to the identity matrix.
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$(A)\left(A^{-1}\right)=\left(A^{-1}\right)(A)=I$

Addition and Subtraction: matrices must have the same dimensions

$$
\left.\begin{array}{cl}
\mathbf{A} & +\begin{array}{c}
\mathbf{B} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]}
\end{array}=\begin{array}{cc}
\mathbf{A}+\mathbf{B} & \mathbf{A} \\
{\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]}
\end{array} \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
\end{array} \quad=\begin{array}{cc}
\mathbf{A}-\mathbf{B} \\
a-e & b-f \\
c-g & d-h
\end{array}\right]
$$

Scalar Multiplication: for matrices of any dimension
Given matrix $\mathrm{M}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ then $k \mathrm{M}=\left[\begin{array}{lll}k a & k b & k c \\ k d & k e & k f\end{array}\right]$
Determinant: must be a square matrix

$$
2 \times 2 A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad 3 \times 3 \quad B=\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right] \text { repeat columns } \mathbf{1} \text { and } \mathbf{2}\left[\begin{array}{lllll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} & \mathrm{~d} & \mathrm{e} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{~g} & \mathrm{~h}
\end{array}\right]
$$

$\operatorname{det}(A)=|A|=a d-b c$
Now multiply and combine products according to the pattern.

and

$$
\operatorname{det}(B)=|B|=(a e i+b f g+c d h)-(c e g+a f h+b d i)
$$

Inverse: must be a square matrix. If $\operatorname{det}(A)=0$, then A is a singular matrix (non-invertible).
For 2×2 find the inverse without a calculator. For matrices larger than 2×2 - find the inverse with an app.

Given matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $A^{-1}=\frac{1}{\operatorname{det}}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Solving a System of Equations:
$\left\{\begin{array}{c}\mathbf{C} \quad \mathbf{x} \\ \left\{\begin{array}{l}\text { V }\end{array}=\mathbf{A}\right. \\ d x+e y=f\end{array}\right.$ written as a Matrix Equation: $\left[\begin{array}{ll}a & b \\ d & e\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c \\ f\end{array}\right] \quad$ Can be solved by: $\mathbf{V}=\mathbf{C}^{-1} \mathbf{A}$
where \mathbf{C} is the Coefficient matrix, \mathbf{V} is the Variable matrix, and \mathbf{A} is the \mathbf{A} nswer matrix.

