Accelerated Pre-Calculus					
January 2023					
		Unit 5 – Matrices			
Monday	Tuesday	Wednesday	Thursday	Friday	
2 Last Day of Winter Break	3 Teacher Work Day	 4 5.01 Introduction to Matrices Vocabulary Add, Subtract, & Scalar Properties 	 5 5.02 Matrix Multiplication Multiply Matrices Properties Multiplicative Identity Verifying Inverses 	6 5.02 Cont'd More Practice with Matrix Multiplication	
		HW: 5.01 Practice	HW: 5.02 Practice	HW: 5.02 Extra Practice	
 9 5.03 Matrix Inverses 2x2 matrices only Determinant Multiplicative Inverse Singular Matrix HW: 5.03 Practice 	10 5.04 Matrix Operations Review	11 5.04 Matrix Operations Review	12 5.05 Matrix Ops Quiz	 13 5.06 Solving a 2X2 System of Equations Review of Elimination Using a Matrix Equation to Solve HW: 5.06 Practice 	
16 MLK Holiday	 17 5.07 Matrix Inverses 3x3 matrices only Determinant Multiplicative Inverse on calculator HW: 5.07 Practice 	 18 5.08 Solving a 3X3 System of Equations Review of Elimination Using a Matrix Equation to Solve HW: 5.08 Practice 	19 5.09 Applications with Matrices HW: 5.09 Practice	20 5.10 Applications with Matrices Cont'd Finish 5.10	
23	24	25	26	27	
5.11 Review	5.12 Matrices Test				

Homework Keys:

tinyurl.com/MiltonAPC

Matrices

Properties of Matrix Addition	Properties of Matrix Multiplication			
roperties of Matrix Addition	roperties of Matrix Multiplication			
Given matrices A, B, C with the same dime	ensions Given matrices A and B with the same inner dimensions			
Commutative Property : A + B = B + A	Matrix Multiplication is not commutative			
Associative Property: $A + (B + C) = (A + C)$	B) + C Associative Property: $(AB)C = A(BC)$			
Scalar Distributive Property : $k (A + B) = k$	kA + kB Associative Property of Scalar Multiplication: $k(AB) = (kA)B = A(kB)$			
Identity matrix (I)	A * I = I * A = A			
2 x 2 3 x 3 The product of two inverse matrices is equal to the identity matrix.				
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (A)(A^{-1}) = (A^{-1})(A) = I$				
Addition and Subtraction: matrices must have the same dimensions				
$A + B = A + B \qquad A - B = A - B$				
$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$				
Scalar Multiplication: for matrices of any dimension				
Given matrix M = $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ then $kM = \begin{bmatrix} ka & kb & kc \\ kd & ke & kf \end{bmatrix}$				
Determinant: must be a square matrix				
$\mathbf{2 \times 2} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad 3$	3 x 3 $B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ repeat columns 1 and 2 $\begin{bmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{bmatrix}$			
det(A) = A = ad - bc	Now multiply and combine products according to the pattern.			
	$ \begin{bmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{bmatrix} $ and $ \begin{bmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{bmatrix} $			
C	det(B) = B = (aei + bfg + cdh) - (ceg + afh + bdi)			
Inverse: must be a square matrix. If det(A) = 0, then A is a singular matrix (non-invertible). For 2x2 find the inverse without a calculator. For matrices larger than 2x2 – find the inverse with an app.				
Given matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $A^{-1} = \frac{1}{det} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ Solving a System of Equations:				
$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$ written as a Matrix Equation: $\begin{bmatrix} a & b \\ d & e \end{bmatrix} x \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ f \end{bmatrix}$ Can be solved by: $V = C^{-1}A$				
where C is the C oefficient matrix, V is the V ariable matrix, and A is the A nswer matrix.				