Accelerated Pre-Calculus May 2023 Calendar Units 10 - Logarithms				
Monday	Tuesday	Wednesday	Thursday	Friday
				4/28 Unit 10.01 (Day 1) Exponential Function Review Math EOC (Algebra) 8:20-11:45am
5/110.01Exponential Function Review (Day 2) Solving Equations with like bases	5/2 10.02 Log Functions Converting between log form and exponential form - Special log bases Evaluate logs	$5 / 3$ 10.03 Properties of Logs - Expanding Logs - Condensing Logs	$\begin{aligned} & 5 / 4 \\ & 10.03 \\ & \text { Properties of Logs } \\ & \text { (Day 2) } \end{aligned}$	$5 / 5$ 10.04 Solving Equations (Lesson 3-4) Exponential Equations
8 10.05 Solving Log Equations (Lesson 3-4) - Log Equations	9 10.06 Solving Log and exponential EquationsLumberjack Logs Activity	10 $10.07 \quad$ Review Logs- Solving Equations and Properties	11 10.07 Review (day 2) Logs- Solving Equations and Properties	$\begin{array}{\|l\|} \hline 12 \\ 10.08 \\ \text { Graphing Log } \\ \text { Functions } \end{array}$
15 10.09 Graphing Log Functions (Day 2)	1610.10Log Test Review (Day 1)	17 10.10 Log Test Review (Day 2)	18 10.10 Log Test Review (Day 3)	19 10.11 Log Test
22 Makeups and Recoveries	23 Makeups and Recoveries (Periods 1,2,3) *Half-Day 8:20am -12:40pm	24 Makeups and Recoveries (Periods 4,5,6) *Half-Day 8:20am -12:40pm	25 Last Day of School Makeups and Recoveries (Period 7) *Half-Day 8:20am -12:40pm	26 Teacher Post-Planning Day

$$
\text { Logarithms: } \log _{b} x=y \text { if ound only if } b^{y}=x
$$

The logarithm of a positive number is the power of the base that produces that number.
$\boldsymbol{\operatorname { l o g }} \boldsymbol{N}$: A logarithm whose base is 10 is called a common logarithm.
$\ln N$: A logarithm whose base is e is called a natural logarithm.

Properties of Logarithms:

(1) Argument = 1: $\quad \log _{b} 1=0$ or $\log 1=0$ or $\ln 1=0$
(2) Argument $=$ Base: $\quad \log _{b} b=1$ or $\log 10=1$ or $\ln e=1$
(3) Argument = Power of Base: $\log _{b} b^{x}=x$ or $\log 10^{x}=x$ or $\ln e^{x}=x$
(4) Exponent = Logarithm:
$b^{\log _{b} x}=x$ or $10^{\log x}=x$ or $e^{\ln x}=x$
(5) Product Property:
$\log _{b} x y=\log _{b} x+\log _{b} y$
(6) Quotient Property:
$\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$
(7) Power Property:
$\log _{b} x^{m}=m \log _{b} x$
(8) One-to-One Property:
(9) Change of Base Property:
$\log _{b} x=\log _{b} y$ if and only if $x=y$
$\log _{b} x=\frac{\log _{a} x}{\log _{a} b}=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}$

Graph of Logarithmic Function:

Parent Graph of $f(x)=\log _{2} x$

Function Transformation for $g(x)=a \log _{n}(b x-h)+k$

- a is the vertical stretch (if $|a|>1$) or compression (if $0<|a|<1$)
- a is the reflection over the x-axis (if $a<0$)
- $\quad b$ is the reflection over the y-axis (if $b<0$)
- h is the horizontal shift (left if $h<0$ and right if $h>0$)
- k is the vertical shift (up if $k>0$ and down if $k<0$)
(1) Graph the Asymptote: $x=h$, unless reflected over the y-axis then $x=-h$.
(2) Find where the parent's x-intercept moved to by following the transformations.
(3) Find where the additional point of (base, 1) moved to by following the transformations.
(4) Draw a smooth curve approaching the asymptote.

Domain: (h, ∞), unless reflected over the y-axis then $(-\infty,-h)$
Range: $(-\infty, \infty)$
For the new x-intercept: set $g(x)=0$ and solve for x.

