$\qquad$

# Accelerated Pre-Calculus 

## Unit 1 Packet

Introduction to
Trigonometry
$\qquad$

## Accel Pre-Calculus Trig Ratio Investigation

Working with a partner, measure the side lengths of the following triangles (in cm ) then find the sine, cosine, and tangent of theta for each triangle (remember SOHCAHTOA). Discuss the results with your partner.
b.


d.

2.
a.

b.

c.
d.

$\qquad$

## Warm-up:

1. Rationalize $\frac{2}{\sqrt{5}}$
2. Solve for x .

$$
12=\frac{x}{3} \quad 20=\frac{5}{x}
$$

3. How do you solve for $x$ ?

$$
x+7=19 \quad x^{2}=30
$$

Right Triangle Trigonometry


WOW. UM Quesnov:
JUSTO DOUCE-OHEOK-


Examples: Find sine, cosine, and tangent of Angle A.
1.

2.


Examples: Find all 6 trig ratios from Angle A.
1.

2.


Example: Given $\cot \theta=\frac{13}{9}$, find the other 5 trig ratios from $\theta$.
$\qquad$
1.02 Practice Right Triangle Trig Ratios

Find the exact values of the six trigonometric functions of $\theta$.

## (Example 1)

1. 


3.

5.

7.


Use the given trigonometric function value of the acute angle $\theta$ to find the exact values of the five remaining trigonometric function values of $\boldsymbol{\theta}$. (Example 2)
9. $\sin \theta=\frac{4}{5}$
11. $\tan \theta=3$
13. $\cos \theta=\frac{5}{9}$
$\qquad$

Examples: Find the missing side length using trigonometry (solve for x ).
1.

2.


Examples: Find the missing angle measure using trigonometry (solve for $\theta$ ).
3.

4.


Examples: Solve the triangle (find all side lengths and all angle measures).
5.

6.


Find the value of $x$. Round to the nearest tenth, if necessary.
(Example 3)
19.

20.

21.

22.

23.

24.

25.

26.


27 MOUNTAIN CLIMBING A team of climbers must determine the width of a ravine in order to set up equipment to cross it. If the climbers walk 25 feet along the ravine from their crossing point, and sight the crossing point on the far side of the ravine to be at a $35^{\circ}$ angle, how wide is the ravine? (Example 4)

28. SNOWBOARDING Brad built a snowboarding ramp with a height of 3.5 feet and an $18^{\circ}$ incline. (Example 4)
a. Draw a diagram to represent the situation.
b. Determine the length of the ramp.
29. DETOUR Traffic is detoured from Elwood Ave., left 0.8 mile on Maple St., and then right on Oak St., which intersects Elwood Ave. at a $32^{\circ}$ angle. (Example 4)
a. Draw a diagram to represent the situation.
b. Determine the length of Elwood Ave. that is detoured.
30. PARACHUTING A paratrooper encounters stronger winds than anticipated while parachuting from 1350 feet, causing him to drift at an $8^{\circ}$ angle. How far from the drop zone will the paratrooper land? (Example 4)


Find the measure of angle $\boldsymbol{\theta}$. Round to the nearest degree, if necessary. (Example 5)
31.

32.

33.

34.

35.

37.

38.

$\qquad$

## A Quick Rewind:

## 1. Solve the triangle.



## 2. Solve the triangle.



Trigonometric ratios have many practical real-world examples. Angles of elevation and depression are formed by the horizontal lines that a person's lines of sight to an object form. If a person is looking up, the angle is an elevation angle. If a person is looking down, the angle is a depression angle.

$x=$ angle of elevation from ground to top of tree

$x=$ angle of depression from lighthouse to boat

Example \#3: A plane is coming in for a landing with an angle of depression of $32^{\circ}$. The plane is currently 3200 feet in the air. How far does the plane have to travel before it hits the runway?

Example \#4: A child holding on to the string of a kite gets tired and decides to put the string on the ground and secure it with a brick. The length of the string from the brick to the kite is 240 feet.

a. If the angle formed by the string and the ground is $50.275^{\circ}$, how high is the kite?
b. What is the horizontal distance between the kite and the brick?

Example \#5: A submersible traveling at a depth of 250 feet dives at an angle of $15^{\circ}$ with respect to a line parallel to the water's surface. It travels a horizontal distance of 1500 feet during the dive. What is the depth of the submersible after the dive?

Example \#6: The steepest railway in the world is the Katoomba Scenic Railway in Australia. The passenger car is pulled up the mountain by twin steel cables. It travels along the tract 1020 feet to obtain a change in altitude of 647 feet.
a. Find the angle of elevation of the railway.
b. How far does the car travel in a horizontal direction?

## Accel Pre-Calculus

### 1.04 Practice Trig Applications

Date: $\qquad$
39. PARASAILING Kayla decided to try parasailing. She was strapped into a parachute towed by a boat. An 800 -foot line connected her parachute to the boat, which was at a $32^{\circ}$ angle of depression below her. How high above the water was Kayla? (Example 6)

41. ROLLER COASTER On a roller coaster, 375 feet of track ascend at a $55^{\circ}$ angle of elevation to the top before the first and highest drop. (Example 6)
a. Draw a diagram to represent the situation.
b. Determine the height of the roller coaster.
43. BASKETBALL Both Derek and Sam are 5 feet 10 inches tall. Derek looks at a 10 -foot basketball goal with an angle of elevation of $29^{\circ}$, and Sam looks at the goal with an angle of elevation of $43^{\circ}$. If Sam is directly in front of Derek, how far apart are the boys standing? (Example 7)


LIGHTHOUSE Two ships are spotted from the top of a 156 -foot lighthouse. The first ship is at a $27^{\circ}$ angle of depression, and the second ship is directly behind the first at a $7^{\circ}$ angle of depression. (Example 7)
a. Draw a diagram to represent the situation.
b. Determine the distance between the two ships.

Solve each triangle. Round side lengths to the nearest tenth and angle measures to the nearest degree. (Example 8)
47.

49.

55. BASEBALL Michael's seat at a game is 65 feet behind home plate. His line of vision is 10 feet above the field.
a. Draw a diagram to represent the situation.
b. What is the angle of depression to home plate?
56. HIKING Jessica is standing 2 miles from the center of the base of Pikes Peak and looking at the summit of the mountain, which is 1.4 miles from the base.
a. Draw a diagram to represent the situation.
b. With what angle of elevation is Jessica looking at the summit of the mountain?
71. SCUBA DIVING A scuba diver located 20 feet below the surface of the water spots a shipwreck at a $70^{\circ}$ angle of depression. After descending to a point 45 feet above the ocean floor, the diver sees the shipwreck at a $57^{\circ}$ angle of depression. Draw a diagram to represent the situation, and determine the depth of the shipwreck.

### 1.05 Radian Investigation

Date: $\qquad$

## Materials: Circles Handout, Protractor, Ruler, 5 Twizzler strands

## Part 1: Defining a Radian:

## Measuring the Radii

Work on one circle at a time
Step 1: Use a Twizzler strand to measure the radius of the circle. Cut your Twizzler to that length.

Step 2: Wrap your radius Twizzler along the circle, starting at the line and in either direction.
Step 3: Make a mark on your paper where the Twizzler ends.
Repeat for the other circles. In Step 2, make sure to wrap the Twizzler strand around in the same direction as you did for the first circle.

## Measuring the Angle Formed

Step 1: From the center, draw a line of best fit passing between your three points.
Step 2: Using a protractor, measure the angle that is created: $\qquad$
Step 3: Share your measurement with the class.
Definition of Radian
The angle that you submitted is measured in degrees. Radian is another unit that we can use to express angle measurement. More specifically, a radian is defined as

## Part 2: Converting Between Degrees and Radians:

Degrees vs. Radians
So we know:

Therefore, each radian is how many degrees?

Convert from Degrees to Radians:
Convert from Radians to Degrees:


An angle is formed by two rays that share a fixed endpoint known as the vertex. One of the rays is fixed to form the initial side of the angle and the other ray rotates to form its terminal side. An angle with its vertex at the origin and its initial side along the positive $x$-axis is in standard position.


If the rotation is in a counterclockwise direction, the angle formed is positive.


Know the quadrants and the signs for x and y in each quadrant! That is very important in trigonometry. Degree or angle measures are read with respect to the quadrants starting at the positive x -axis (standard position) and moving in a counter-clockwise direction.


If the terminal side of an angle falls on one of the axes, the angle is a quadrantal angle.
There are four (4) quadrantal angles on a unit circle. They are:
$0^{\circ}\left(360^{\circ}\right)$ on the x-axis, $90^{\circ}$ on the $y$-axis, $180^{\circ}$ on the -x-axis, and $270^{\circ}$ on the -y-axis.

## More Vocabulary from Geometry:

Right Angle: an angle whose measure is exactly $90^{\circ}$
Acute Angle: an angle whose measure is less than $90^{\circ}$
Obtuse Angle: an angle whose measure is greater than $90^{\circ}$
Complementary Angles: two angles the sum of whose measure is $90^{\circ}$
Supplementary Angles: two angles the sum of whose measure is $180^{\circ}$

A new unit of measurement for angles: a radian is the measure of an angle in a circle whose intercepted arc has a length equal to the radius.
Remember the formula relating the length of a radius ( r ) of a circle to the circumference of the circle (C):

$$
C=2 \pi r
$$



About the center of a circle is $360^{\circ}$ (degrees).
Also about the center of a circle is $2 \pi$ radians.
Therefore: $360^{\circ}$ is equivalent to $2 \pi$ radians
So $360^{\circ}=2 \pi$ radians
Or simplified, $180^{\circ}=\boldsymbol{\pi}$ radians
(This is our conversion unit!)

Degrees $\rightarrow$ Radians
Convert from degrees to radians.
State the quadrant in which the angle lies.
a. $120^{\circ}$ Multiply by $\frac{\pi}{180^{\circ}}$ to
b. $\frac{5 \pi}{6}$ radians Multiply by $\frac{180^{\circ}}{\pi}$ to
cancel the degrees and get radians.

Radians $\quad \rightarrow \quad$ Degrees
Convert from radians to degrees.
State the quadrant in which the angle lies.
cancel the radians and get degrees.
1.06 Degree \& Radian Conversion Practice

Directions: Complete \#10-17 all
Write each degree measure in radians as a multiple of $\pi$ and each radian measure in degrees. (Example 2)

$$
\text { 10. } 30^{\circ}
$$

11. $225^{\circ}$
12. $-165^{\circ}$
13. $-45^{\circ}$
14. $\frac{2 \pi}{3}$
15. $\frac{5 \pi}{2}$
16. $-\frac{\pi}{4}$
17. $-\frac{7 \pi}{6}$
$\qquad$

## Review:

a) Convert $315^{\circ}$ to radians.
b) Convert $\frac{11 \pi}{6}$ to degrees.

If $\theta$ is the measure in radians of a central angel in a circle with radius $r$, then the length, $s$, of the arc intercepted by $\theta$ is given by $s=r \theta$. NOTE: $\theta$ must be in radians.


Example 1: Find the arc length if the radius is 8 cm and the central angle measures $\frac{3 \pi}{4}$ radians.

Example 2: Find the arc length if the radius is 12 cm and the central angle measures $\frac{5 \pi}{6}$ radians.

Example 3: Find the arc length if the radius is 2.5 mi and the central angle measures $300^{\circ}$.

Example 4: While playing a game of chance, Jack flicks a spinner with a radius of 2 inches. If the spinner swings through $2665^{\circ}$, how far did the arrowhead travel during Jack's turn?


### 1.07 Practice- Applications with Arc Length

Directions: Complete \#1,2 51-60, 63, 33

1. Find the length of an arc that subtends a central angle of 3 radians in a circle with radius 2 in.
2. Find the length of a radius of a circle if an arc of length 7 cm is subtended by an angle of 2 rad.
3. Find the length of the arc $s$ in the figure.

4. Find the angle $\theta$ in the figure.

5. Find the radius $r$ of the circle in the figure.

6. Find the length of an arc that subtends a central angle of $45^{\circ}$ in a circle of radius 10 m .
.55. Find the length of an arc that subtends a central angle of 2 rad in a circle of radius 2 mi .
7. A central angle $\theta$ in a circle of radius 5 m is subtended by an arc of length 6 m . Find the measure of $\theta$ in degrees and in radians.
.57. An arc of length 100 m subtends a central angle $\theta$ in a circle of radius 50 m . Find the measure of $\theta$ in degrees and in radians.
8. A circular arc of length 3 ft subtends a central angle of $25^{\circ}$. Find the radius of the circle.
9. Find the radius of the circle if an arc of length 6 m on the circle subtends a central angle of $\pi / 6 \mathrm{rad}$.
10. Find the radius of the circle if an arc of length 4 ft on the circle subtends a central angle of $135^{\circ}$.
11. DRAMA A pulley with radius $r$ is being used to remove part of the set of a play during intermission. The height of the pulley is 12 feet.
a. If the radius of the pulley is 6 inches and it rotates $180^{\circ}$, how high will the object be lifted?
b. If the radius of the pulley is 4 inches and it rotates $900^{\circ}$, how high will the object be lifted?


AMUSEMENT PARK A carousel at an amusement park rotates $3024^{\circ}$ per ride. (Example 4)
a. How far would a rider seated 13 feet from the center of the carousel travel during the ride?
b. How much farther would a second rider seated 18 feet from the center of the carousel travel during the ride than the rider in part a?

## Accelerated Pre-Calculus

### 1.08 Co-terminal Angles and Reference Angles

Co-terminal angles are angles that have the same terminal side. Not only are co-terminal angles created by measuring an angle both in the negative and in the positive directions, but they can be created by doing more than one revolution $\left(360^{\circ}\right)$. Yes, angles can measure more than $360^{\circ}$ !

Co-terminal angles can be found at the same location just another revolution more or less. So, to find co-terminal angles, we must add or subtract $360^{\circ}$ and we will end in the same location for the terminal side.

Example 1: Find one positive and one negative co-terminal angle for the given angle.
a. $30^{\circ}$
b. $-34^{\circ}$
c. $\frac{7 \pi}{6}$

Can we ever identify all co-terminal angles? No, there are infinitely many!
We can use this process for angles larger than $360^{\circ}$ by subtracting 360 from the larger angle measure until we find a positive and a negative co-terminal angle.

Example 2: Find one positive and one negative co-terminal angle for the given angle. State the quadrant in which the terminal side lies.
a. $800^{\circ}$
b. $-3732^{\circ}$
c. $3945^{\circ}$

## Reference Angles

A Reference angle $\left(\theta^{\prime}\right)$ is the angle formed by the terminal side of the angle and the closest part of the $\underline{x \text {-axis. }}$
Examples: Find the measure of the reference angle ( $\theta^{\prime}$ ) for each angle.
a. $46^{\circ}$
b. $\frac{3 \pi}{4}$

c. $253^{\circ}$

d. $\frac{7 \pi}{4}$

e. $487^{\circ}$ (first find a positive co-terminal angle between $0^{\circ}$ and $360^{\circ}$ )

f. $-\frac{13 \pi}{3}$ (first find a positive co-terminal angle between 0 and $2 п)$


In summary, to find the reference angle $\left(\theta^{\prime}\right)$ based on the quadrant in which the terminal side of $\theta$ lies:

| QII $\begin{gathered} \theta^{\prime}= \\ \theta^{\prime}= \end{gathered}$ | QI | $\theta^{\prime}=$ | Reminder: to use the rules in this table, the angle $\theta$ must be between $0^{\circ}$ and $360^{\circ}$ (or between 0 and $2 \pi$ ). |
| :---: | :---: | :---: | :---: |
| QIII $\begin{aligned} & \theta^{\prime}= \\ & \theta^{\prime}= \end{aligned}$ | QIV | $\begin{gathered} \theta^{\prime}= \\ \theta^{\prime}= \end{gathered}$ | If this is not the case, then find a positive, co-terminal angle for $\theta$ between $0^{\circ}$ and $360^{\circ}$ to use the table. |

### 1.08 Coterminal \& Reference Angles

Date: $\qquad$
Directions: Complete \#18-26 all
Identify all angles that are coterminal with the given angle.
Then find and draw one positive and one negative angle coterminal with the given angle. (Example 3)
18. $120^{\circ}$
19. $-75^{\circ}$
20. $225^{\circ}$
21. $-150^{\circ}$
22. $\frac{\pi}{3}$
23. $-\frac{3 \pi}{4}$
24. $-\frac{\pi}{12}$
25. $\frac{3 \pi}{2}$
26. GAME SHOW Sofia is spinning a wheel on a game show. There are 20 values in equal-sized spaces around the circumference of the wheel. The value that Sofia needs to win is two spaces above the space where she starts her spin, and the wheel must make at least one full rotation for the spin to count. Describe a spin rotation in degrees that will give Sofia a winning result.
(Fxamnle 3)

Directions: Complete \#17-24 all
Sketch each angle. Then find its reference angle. (Example 3)
17. $135^{\circ}$
19. $\frac{7 \pi}{12}$
21. $-405^{\circ}$
23. $\frac{5 \pi}{6}$
18. $210^{\circ}$
20. $\frac{11 \pi}{3}$
22. $-75^{\circ}$
24. $\frac{13 \pi}{6}$

### 1.09 Coterminal and Reference Angles

Date:
Find a coterminal angle between $0^{\circ}$ and $360^{\circ}$.

1) $885^{\circ}$
2) $-435^{\circ}$

Find a coterminal angle between 0 and $2 p$ for each given angle.
3) $\frac{17 \pi}{6}$
4) $-\frac{\pi}{4}$

Find a positive and a negative coterminal angle for each given angle.
5) $240^{\circ}$
6) $-166^{\circ}$
7) $-\frac{5 \pi}{2}$
8) $\frac{17 \pi}{12}$

State if the given angles are coterminal.
9) $115^{\circ}, 475^{\circ}$
10) $\frac{5 \pi}{6}, \frac{23 \pi}{6}$

Find the reference angle.
11)

13)

12)

14)

16) $\frac{19 \pi}{9}$
18) $-595^{\circ}$
19) $-\frac{4 \pi}{3}$
20) $345^{\circ}$
$\qquad$

You may remember special right triangles from Geometry. Here's a refresher in case you don't.

$$
\begin{equation*}
45^{\circ}-45^{\circ}-90^{\circ} \text { Triangle } \tag{ㄱ}
\end{equation*}
$$


$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle




A manufacturer wants to make a larger clock with a height of 30 centimeters. What is the length of each side of the frame? Round to the nearest tenth.


## Special Right Triangles !

Directions: Find each missing side. Write all answers in simplest radical form. Use your solutions to navigate through the maze. Staple all work to this paper!


Version 1: Simplest Radical Form
(E) Gina Wilson (All Things Algebra). 2016

### 1.12 Intro to Unit Circle

Date: $\qquad$


Degrees and Radians Together


1.12 HW: Try filling out the unit circle


Accelerated Pre-Calculus

### 1.13 Unit Circle and Trig Ratios

To find trig ratios from the unit circle:

Remember
$x=\cos$
$y=\sin$
$y / x=\tan$


Using the Unit Circle, find the following.

1. $\sin 30^{\circ}=$
2. $\cos 45^{\circ}=$
3. $\tan \frac{\pi}{6}=$
4. $\csc \frac{\pi}{3}=$
5. $\cot 90^{\circ}=$
6. $\sec 270^{\circ}=$

What about angles in other quadrants?
7. $\cos \frac{2 \pi}{3}=$
8. $\csc \frac{3 \pi}{4}=$
9. $\cot 210^{\circ}=$
10. $\sin \frac{5 \pi}{3}=$
11. $\tan 360^{\circ}=$
12. $\sec 330^{\circ}=$

What about angles outside of 0 to $2 \pi$ ?
13. $\cos \frac{11 \pi}{3}=$
14. $\sin -390^{\circ}=$
15. $\tan 1305^{\circ}=$
16. $\csc \frac{19 \pi}{6}=$
17. $\sec -135^{\circ}=$
18. $\cot -\frac{3 \pi}{2}=$
$\qquad$


| Degree | Radian | Coordinates | $\cos \theta$ | $\sin \theta$ | $\tan \theta$ | $\sec \theta$ | $\csc \theta$ | $\cot \theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0^{\circ}$ |  |  |  |  |  |  |  |  |
| $30^{\circ}$ |  |  |  |  |  |  |  |  |
| $45^{\circ}$ |  |  |  |  |  |  |  |  |
| $60^{\circ}$ |  |  |  |  |  |  |  |  |
| $90^{\circ}$ |  |  |  |  |  |  |  |  |

$\qquad$
1.14 Trig with the Unit Circle \& Reference Angles

Date $\qquad$
To find values of trig functions anywhere on the unit circle:
a) Determine the quadrant of the given angle and reference angle.
b) Give the coordinates. Check signs!
c) Evaluate the trig function.

Remember: if the coordinates of any point on the unit circle are $(x, y)$, then
$\cos \theta=$ $\qquad$ $\sin \theta=$ $\qquad$ $\tan \theta=$ $\qquad$
$\sec \theta=$ $\qquad$
$\csc \theta=$ $\qquad$

$$
\cot \theta=
$$

Find the value of each using the steps outlined above.

1) $\cos 120^{\circ}=$
2) $\boldsymbol{\operatorname { t a n }} \frac{4 \pi}{3}=$
a) quadrant: $\qquad$ a) quadrant: $\qquad$
b) reference angle: $\qquad$ b) reference angle: $\qquad$
c) coordinates: $\qquad$ c) coordinates: $\qquad$
3) $\sin 315^{\circ}=$
4) $\boldsymbol{\operatorname { t a n }} \frac{5 \pi}{4}=$
a) quadrant: $\qquad$ a) quadrant: $\qquad$
b) reference angle: $\qquad$ b) reference angle: $\qquad$
c) coordinates: $\qquad$ c) coordinates: $\qquad$
5) $\cos 210^{\circ}$
6) $\tan \frac{5 \pi}{6}$
a) quadrant: $\qquad$
b) reference angle: $\qquad$
c) coordinates: $\qquad$
a) quadrant: $\qquad$
b) reference angle: $\qquad$
c) coordinates: $\qquad$
1.14 HW Complete the information for each angle provided:

| Angle | Quadrant | Reference Angle | Check Signs | Coordinates | Trigonometric Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $300^{\circ}$ |  |  |  |  | $\sin 300^{\circ}=$ |
| $\frac{7 \pi}{6}$ |  |  |  |  | $\csc \frac{7 \pi}{6}=$ |
| $240^{\circ}$ |  |  |  |  | $\tan 240^{\circ}=$ |
| $\frac{\pi}{6}$ |  |  |  |  | $\sec \frac{\pi}{6}=$ |
| $330^{\circ}$ |  |  |  |  | $\cot 330^{\circ}=$ |
| $\frac{\pi}{2}$ |  |  |  |  | $\sec \frac{\pi}{2}=$ |
| $\frac{11 \pi}{6}$ |  |  |  |  | $\cos \frac{11 \pi}{6}=$ |
| $\frac{\pi}{3}$ |  |  |  |  | $\sec \frac{\pi}{3}=$ |
| $135^{\circ}$ |  |  |  |  | $\cot 135^{\circ}=$ |
| $\frac{2 \pi}{3}$ |  |  |  |  | $\sec \frac{2 \pi}{3}=$ |
| $\frac{3 \pi}{2}$ |  |  |  |  | $\tan \frac{3 \pi}{2}=$ |
| $\frac{5 \pi}{3}$ |  |  |  |  | $\tan \frac{5 \pi}{3}=$ |
| $\frac{\pi}{4}$ |  |  |  |  | $\cos \frac{\pi}{4}=$ |
| $\pi$ |  |  |  |  | $\csc \pi=$ |

$\qquad$
We now know how to answer trigonometric problems that use the special angles found on the unit circle. Problems like:

1) $\sin 315^{\circ}$ : Because this is a $45^{\circ}$ family, the answer is either $\frac{\sqrt{2}}{2}$ or $-\frac{\sqrt{2}}{2}$. The angle $315^{\circ}$ is found in the $4^{\text {th }}$ quadrant, and sine is based on $y$ which is negative in the $4^{\text {th }}$ quadrant. So, the answer is the negative $y$-value: $\sin 315^{\circ}=-\frac{\sqrt{2}}{2}$
2) $\tan \frac{7 \pi}{6}$ : Because this is the "over 6 " family ( $30^{\circ}$ family) but in the $3^{\text {rd }}$ quadrant, the coordinates are $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. The formula for tangent is $\frac{y}{x^{\prime}}$, here that means $\frac{-1 / 2}{-\sqrt{3} / 2}$. Both the negatives and the denominators of 2 cancel out, leaving $\frac{1}{\sqrt{3}}$. This has to be rationalized. So, the answer is: $\tan \frac{7 \pi}{6}=\frac{\sqrt{3}}{3}$

## What if the angle is bigger than 1 revolution around the circle?

3) $\cos 840^{\circ}$ : As before, if values are too large to know, use coterminal angles to bring them down to a value we already know. Subtract $360^{\circ}$ enough times so that the angle is now between $0^{\circ}$ and $360^{\circ}: 840^{\circ}-360^{\circ}-360^{\circ}=120^{\circ}$. The coterminal angle will have the same cosine value, so consider it as $\cos 120^{\circ}$. This angle is in the $60^{\circ}$ family in Quadrant 2 with coordinates $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Cosine uses the $x$-value of the coordinates.

So, the answer is: $\cos 840^{\circ}=\cos 120^{\circ}=-\frac{1}{2}$

## What if the angle is negative?

4) $\csc \left(-\frac{4 \pi}{3}\right)$ : The angle is from the "over $3^{\prime \prime}$ family ( $60^{\circ}$ family). Cosecant is the flip of sine, and sine is the $y$-value. The $y$-values for all "over 3 " angles are $\frac{\sqrt{3}}{2}$ or $-\frac{\sqrt{3}}{2}$. To determine the quadrant, find the coterminal angle by adding $2 \pi$ : $-\frac{4 \pi}{3}+\frac{6 \pi}{3}=\frac{2 \pi}{3}$. The y-value in Quadrant 2 will be positive, $y=\frac{\sqrt{3}}{2}$. The cosecant value requires the reciprocal. So $\csc \left(-\frac{4 \pi}{3}\right)=\csc \frac{2 \pi}{3}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$

What if the location is not even on the unit circle? Sometimes we have to fall back on right triangle trigonometry rather than using the unit circle.
5) Find $\sec \theta$ where the terminal side of $\theta$ passes through $(-5,7)$.

Step 1: Plot the point and connect it to the origin.


Step 2: Connect the point perpendicularly to the closest x-axis, making a reference triangle. Label $\theta$ as the reference angle. Use Pythagorean Theorem to determine the length of the hypotenuse. Label all 3 side lengths.


Step 3: Use SohCahToa and the reciprocal relations to complete the problem.

$$
\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{\sqrt{74}}{-5}
$$

1.15 Practice

Page 251: \#5-31 odd and \#43-51 odd
The given point lies on the terminal side of an angle $\theta$ in standard position. Find the values of the six trigonometric functions of $\boldsymbol{\theta}$. (Example 1)
5. $(1,-8)$
7. $(-8,15)$

Find the exact value of each trigonometric function, if defined. If not defined, write undefined. (Example 2)
9. $\sin \frac{\pi}{2}$
11. $\cot \left(-180^{\circ}\right)$
13. $\cos \left(-270^{\circ}\right)$
15. $\tan \pi$

Sketch each angle. Then find its reference angle. (Example 3)
17. $135^{\circ}$
19. $\frac{7 \pi}{12}$
21. $-405^{\circ}$
23. $\frac{5 \pi}{6}$

Find the exact value of each expression. (Example 4)
25. $\cos \frac{4 \pi}{3}$
27. $\sin \frac{3 \pi}{4}$
29. $\csc 390^{\circ}$
31. $\tan \frac{11 \pi}{6}$

Find the exact value of each expression. If undefined, write undefined. (Examples 7 and 8)
43. $\sec 120^{\circ}$
45. $\cos \frac{11 \pi}{3}$
47. $\csc 390^{\circ}$
49. $\csc 5400^{\circ}$
51. $\cot \left(-\frac{5 \pi}{6}\right)$

### 1.16 Unit Circle Trigonometry Extension Worksheet

The given point lies on the terminal side of an angle $\theta$ in standard position. Find the values of the six trigonometric functions of $\boldsymbol{\theta}$.

1. $(1,-8)$
2. $(-8,15)$

State the quadrant or axis where the terminal side of $\theta$ is found.
3. $\sin \theta<0$ and $\cos \theta<0$
4. $\tan \theta>0$ and $\sec \theta>0$
5. $\cos \theta>0$ and $\cot \theta<0$
6. $\sec \theta<0$ and $\sin \theta=0$
7. $\cos \theta=0$ and $\csc \theta>0$
8. $\cot \theta<0$ and $\cos \theta<0$

First, state the quadrant or axis where the terminal side of $\theta$ is found. Then, find the exact value of the specified trigonometric function using the given information.
9. Find $\cos \theta$ if $\sin \theta=\frac{1}{2}$ and $\tan \theta<0$.

Quadrant: $\qquad$
$\cos \theta=$ $\qquad$
11. Find $\sin \theta$ if $\sec \theta$ is undefined and $\csc <0$.

Quadrant: $\qquad$

$$
\sin \theta=
$$

13. Find $\csc \theta$ if $\tan =\sqrt{3}$ and $\sec \theta>0$

Quadrant: $\qquad$
$\csc \theta=$ $\qquad$
10. Find $\tan \theta$ if $\cos \theta=-\frac{\sqrt{2}}{2}$ and $\sin \theta<0$.

Quadrant: $\qquad$
$\tan \theta=$ $\qquad$
12. Find $\cot \theta$ if $\sec \theta=2$ and $\csc \theta<0$.

Quadrant: $\qquad$
$\cot \theta=$ $\qquad$
14. Find $\sec \theta$ if $\cot \theta=-1$ and $\sin \theta>0$

Quadrant: $\qquad$
$\sec \theta=$ $\qquad$
15. Find $\sec \theta$ and $\csc \theta$ if $\tan \theta=-\frac{4}{3}$ and $\cos \theta<0$.

Quadrant: $\qquad$

$$
\sec \theta=
$$

$\csc \theta=$ $\qquad$
17. Find $\cos \theta$ and $\cot \theta$ if $\sin \theta=-\frac{1}{4}$ and $\tan \theta<0$.
18. Find $\sin \theta$ and $\cos \theta$ if $\cot \theta=\frac{3}{7}$ and $\sec \theta<0$.

Quadrant: $\qquad$ Quadrant: $\qquad$

$$
\cos \theta=
$$

16. Find $\csc x$ and $\cos x$ if $\sec \theta=\frac{17}{8}$ and $\sin \theta<0$.

Quadrant: $\qquad$

$$
\csc \theta=
$$

$\cos \theta=$ $\qquad$
$\sin \theta=$ $\qquad$
$\cot \theta=$ $\qquad$ $\cos \theta=$ $\qquad$

### 1.17 Unit Circle Trigonometry Extension Worksheet

Evaluate each without using a calculator.

1. $\sin \mathrm{x}=\frac{\sqrt{3}}{2} \quad \frac{\pi}{2} \leq \mathrm{x} \leq \pi$
2. $\cos x=\frac{-\sqrt{2}}{2} \quad \pi \leq x \leq \frac{3 \pi}{2}$
3. $\tan x=\sqrt{3} \quad \pi \leq x \leq \frac{3 \pi}{2}$
4. $\cot \mathrm{x}=$ undefined $0 \leq \mathrm{x} \leq \pi$
5. $\csc x=-2 \quad-\pi \leq x \leq-\frac{\pi}{2}$
6. $\sec x=-\frac{2 \sqrt{3}}{3} \quad-\frac{3 \pi}{2} \leq x \leq-\pi$

Evaluate each. Give two solutions.
7. $\sin x=\frac{-1}{2} \quad 0^{\circ} \leq x \leq 360^{\circ}$
8. $\cot \mathrm{x}=-1 \quad 0^{\circ} \leq \mathrm{x} \leq 360^{\circ}$
9. $\tan x=0 \quad 0^{\circ} \leq x \leq 360^{\circ}$
10. $\sec \mathrm{x}=-\sqrt{2} \quad 0 \leq \mathrm{x} \leq 2 \pi$
11. $\csc \mathrm{x}=$ undefined $\quad 0 \leq \mathrm{x} \leq 2 \pi$
12. $\cos x=\frac{\sqrt{3}}{2} \quad 0 \leq x \leq 2 \pi$

Complete each trigonometric expression.
13. $\cos 60^{\circ}=\sin$ $\qquad$ 14. $\tan \frac{\pi}{4}=\sin$
15. $\sin \frac{2 \pi}{3}=\cos$ $\qquad$
16. $\cos \frac{7 \pi}{6}=\sin$ $\qquad$
17. $\sin \left(-45^{\circ}\right)=\cos$ $\qquad$ 18. $\cos \frac{5 \pi}{3}=\sin$ $\qquad$

### 1.19 Review Worksheet: Intro to Trigonometry

Part 1: Be prepared to complete these problems without the use of a calculator!
Determine the exact values of the six trigonometric functions of the angle $\theta$.

1. $\theta=\frac{3 \pi}{4}$
2. $\theta=240^{\circ}$
3. $(5,-12)$ is on the terminal side of an angle in standard position. Determine the exact values of sin, cos, and $\tan$ of the angle.
4. State the quadrant in which $\theta$ lies.
a) $\sin \theta<0, \cos \theta<0$
b) $\sin \theta>0, \tan \theta<0$
c) $\cot \theta>0, \cos \theta>0$
5. Use the given information to determine sine, cosine, and tangent of $\theta$, unless already given.
a) $\tan \theta=-\frac{15}{8} ; \sin \theta<0$.
b) $\sec \theta=-2 ; 0 \leq \theta \leq \pi$.
c) $\sin \theta=0 ; \sec \theta=-1$.
6. Evaluate the trigonometric function of the quadrant angle.
a) $\sec \pi$
b) $\cot \left(\frac{\pi}{2}\right)$

Evaluate each without using a calculator.
7. $\tan 225^{\circ}$
8. $\cos \left(-750^{\circ}\right)$
9. $\sin \left(-240^{\circ}\right)$
10. $\tan \left(\frac{5 \pi}{3}\right)$
11. $\sin \left(-\frac{\pi}{6}\right)$
12. $\cos \left(\frac{11 \pi}{4}\right)$
13. Find the acute angle that satisfies the given equation. Answer in both degrees and radians.
a) $\cos \theta=\frac{1}{2}$
b) $\cot \theta=\frac{\sqrt{3}}{3}$

## Part 2: You will be able to use a calculator for problems like these.

1. Convert $260^{\circ}$ to radian measure.
2. Convert $\frac{5 \pi}{8}$ to degree measure.

State the quadrant in which the terminal side of the angle lies, and find its reference angle. Answer the question in the units that it is given.
3. $105^{\circ}$
4. $-310^{\circ}$
5. $\frac{9 \pi}{5}$
6. DME (Distance Measuring Equipment) is standard avionic equipment on a commercial airplane. This equipment measures the distance from a plane to a radar station. If the distance from a plane to a radar station is 220 miles and the angle of depression is $38^{\circ}$, find the number of ground miles from a point directly below the plane to the radar station.
7. A pendulum is 22.9 centimeters long, and the bob at the end of the pendulum travels 10.5 centimeters. Find the degree measure of the angle through which the pendulum swings.

