Name: \qquad Period: \qquad

Accel. Pre-Calculus

Unit 7 Packet

 Polar Graphs \& Complex Numbers
7.01 Polar Coordinates

Date:

Opener: Plotting Polar Points in Desmos

1. Go to desmos.com/calculator
2. Click the wrench (upper right) and choose the polar grid
3. Put the angle setting in degrees (shocking, right?!?)
4. Equation 1: $r=5$ from $-6 \leq r \leq 6$, scale of 1

Suggestion: Turn off the graph by clicking the colored circle to the left of Equation 1
5. Equation 2: $a=15$ from $-360 \leq a \leq 360$, scale of 15
6. Equation 3: $(r \cos a, r \sin a)$
7. Equation 4: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ shift-underscore makes subscripts
8. Equation 5: $\mathrm{x}_{1}=1$, with a slider
9. Equation 6: $\mathrm{y}_{1}=1$, with a slider

Use the sliders to move the points around.

Points (pun definitely intended!) to consider:

- What happens when r is negative?
- What happens when a is negative?

There is more than one way to plot a point:

Rectangular Graph:
Polar Graph:

Example: Plot the Polar Points: (r, θ) A $\left(2,135^{\circ}\right)$

B $\left(1, \frac{7 \pi}{6}\right)$

Example: Name the location of E in 4 different ways with $-2 \pi \leq \theta \leq 2 \pi$.

Example: Plot 3 points and determine different pairs of coordinates for them.

7.01 Practice:

Graph each point on a polar grid. (Examples 1 and 2)

1. $\mathrm{R}\left(1,120^{\circ}\right)$
2. $F\left(-2, \frac{2 \pi}{3}\right)$
3. $Q\left(4,-\frac{5 \pi}{6}\right)$
4. $D\left(-1_{r}=\frac{5 \pi}{3}\right)$
5. $C(-4, \pi)$
6. $P\left(4.5,-210^{\circ}\right)$

7. ARCHERY The target in competilive target archery consists of 10 evenly spaced concentric circles with score values from 1 to 10 points from the outer circle to the center Suppose an archer using a target with a 60 -centimeter radius shoots arrows at $\left(57,45^{\circ}\right),\left(41,315^{\circ}\right)$, and $\left(15,240^{\circ}\right)$.

(Examples 1 and 2)

a. Flot the points where the archer's arrows hit the target on a polar grid.
b. How many points did the archer earn?

Find three different pairs of polar coordinates that name the given point if $-360^{*} \leq \theta \leq 360^{\circ}$ or $-2 \pi \leq \theta \leq 2 \pi$. (Example S)

15. $\left(-2,300^{\circ}\right)$
17. $\left(-3, \frac{2 \pi}{3}\right)$
19. $\left(-5,-\frac{4 \pi}{3}\right)$
21. $\left(-1,-240^{\circ}\right)$

7.02 Converting Polar Coordinates

The polar and rectangular grids do overlap so that a location can take on coordinates from either system. If you know r and θ, how do you calculate x and y ?

If you know x and y, how do you calculate r and θ ?
\qquad

Example: Find the rectangular coordinates for each point given in polar coordinates.

1. $P\left(4,-60^{\circ}\right)$
2. $\mathrm{Q}\left(-2, \frac{3 \pi}{4}\right)$

Example: For each point given in rectangular coordinates, find four unique polar coordinates with $-2 \pi \leq \theta \leq 2 \pi$.
3. $\mathrm{A}(2,-5)$
4. B $(-9,-4)$

Distance between 2 Points in the Polar Plane

Review: How do we find the distance between two points in the Cartesian Plane?

New method for distance using the Polar Plane:

Example: Find the distance between the points $\left(-3, \frac{\pi}{3}\right)$ and $\left(5,-\frac{11 \pi}{6}\right)$

Example: A radar detects 2 plane s at the same altitude. Their polar coordinates are (5 miles, 310°) and (2 miles, 192°). How far apart are the planes?

7.02 Practice: Complete the odd problems.

Find the rectangular coordinates for each point with the given polar coordinates. Round to the nearest thousandth if necessary. (Example 1)

1. $\left(2, \frac{\pi}{4}\right)$
2. $\left(\frac{1}{4}, \frac{\pi}{2}\right)$
3. $\left(5,240^{\circ}\right)$
4. $\left(2.5,250^{\circ}\right)$
5. $\left(-2, \frac{4 \pi}{3}\right)$
6. $\left(-13,-70^{\circ}\right)$
7. $\left(3, \frac{\pi}{2}\right)$
8. $\left(\frac{1}{2}, \frac{3 \pi}{4}\right)$
9. $\left(-2,270^{\circ}\right)$
10. $\left(4,210^{\circ}\right)$
11. $\left(-1,-\frac{\pi}{6}\right)$
12. $\left(5, \frac{\pi}{3}\right)$

Find 4 pairs of polar coordinates for each point with the given rectangular coordinates for $[-2 \pi, 2 \pi]$. Round to the nearest thousandth if necessary. (Example 2)
13. $(7,10)$
14. $(-13,4)$
15. $(-6,-12)$
16. $(4,-12)$
17. $(2,-3)$
18. $(0,-173)$
19. $(a, 3 a), a>0$
20. $(-14,14)$
21. $(52,-31)$
22. $(3 b,-4 b), b>0$
23. $(1,-1)$
24. $(2, \sqrt{2})$
25. DISTANCE Standing on top of his apartment building, Nicolas determines that a concert arena is 53° east of north. Suppose the arena is exactly 1.5 miles from Nicolas' apartment. (Example 3)

a. How many miles north and east will Nicolas have to travel to reach the arena?
b. If a football stadium is 2 miles west and 0.5 mile south of Nicolas' apartment, what are the polar coordinates of the stadium if Nicolas' apartment is at the pole?

7.03 Quiz Review:

Date \qquad

Polar Coordinates, Equations, and Distance

1) Graph each point on the polar grid. Find three other pairs of polar coordinates that name the point

$$
\text { if }-360^{\circ} \leq \theta \leq 360^{\circ} \quad \text { if }-2 \pi \leq \theta \leq 2 \pi
$$

a) $A\left(4,-120^{\circ}\right)$
b) $B\left(2, \frac{7 \pi}{4}\right)$

d) $D\left(-5,-\frac{\pi}{6}\right)$

2) Given the polar distance formula between two points $A\left(\mathrm{r}_{1}, \theta_{1}\right)$ and $B\left(\mathrm{r}_{2}, \theta_{2}\right)$: $A B=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$, find the distance between A and B.
a) $A\left(4,200^{\circ}\right) B\left(-3,60^{\circ}\right)$
b) $A\left(-7, \frac{5 \pi}{6}\right) \quad B\left(2,-\frac{4 \pi}{3}\right)$
a) $\mathrm{AB}=$ \qquad
b) $\mathrm{AB}=$ \qquad
3) Find the rectangular coordinates for each point with the given polar coordinates. Answer in exact form.
a) $\left(5, \frac{5 \pi}{3}\right)$
b) $\left(-6, \frac{3 \pi}{4}\right)$
a) \qquad
b) \qquad
c) $\left(8, \frac{7 \pi}{6}\right)$
d) $\left(-12,-\frac{3 \pi}{2}\right)$
c) \qquad d) \qquad
4) Find four unique polar coordinates for each point given as rectangular coordinates. Use $-360^{\circ} \leq \theta \leq 360^{\circ}$. Round to the nearest thousandths.
a) $(-1,5)$
b) $(3,-7)$
a) \qquad b) \qquad
\qquad
\qquad

Use $-2 \pi \leq \theta \leq 2 \pi$. Round to the nearest thousandths.
c) $(-5 \sqrt{3},-5)$
d) $(4,3)$
c)
d) \qquad

7.04 Complex Numbers Review

Date: \qquad

Recall that the imaginary number i is defined such that $\boldsymbol{i}^{2}=-1$.

1. $i=$ \qquad
2. $i^{2}=$ \qquad
3. $i^{3}=$ \qquad
4. $i^{4}=$ \qquad
5. $i^{11}=$ \qquad
6. $i^{18}=$ \qquad
7. $i^{67}=$ \qquad
8. $i^{724}=$ \qquad

A complex number has two parts: the real part and the imaginary part.
9. The standard form for complex number is \qquad .

Perform the given operation. Write your answer in standard form of a complex number.
10. $(-4+7 i)+(2-3 i)=$ \qquad 11. $(7-12 i)-(4+9 i)=$ \qquad
12. $(5+8 i) \cdot(2-10 i)=$ \qquad 13. $(3+4 i) \cdot(-8+2 i)=$ \qquad
14. $(3-5 i) \cdot(3-5 i)=$ \qquad 15. $(3-5 i) \cdot(3+5 i)=$ \qquad
\#14: two factors that are the exact same multiplied together (just like a binomial squared). \#15: two factors that only have the sign in the middle changed. They are conjugates.

Which product resulted in an entirely real value having no imaginary part? \qquad
Generalize it as a formula by simplifying: $(a+b i) \cdot(a-b i)=$

State the conjugate $(a-b i)$ of the given complex number $(a+b i)$.
16. $9+4 i$ \qquad 17. $5-2 i$ \qquad 18. $-3+7 i$ \qquad

Use the conjugate of the denominator to rationalize the following fractions.
19. $\frac{1+i}{5-2 i}=$ \qquad 20. $\frac{5-6 i}{-3+7 i}=$
\qquad

Graph the number on the complex plane and find its absolute value (distance from zero).
21. $4-3 i$

$|4-3 i|=$ \qquad
23. $-2+4 i$

$|-2+4 i|=$ \qquad
22. $-5-5 i$

$|-5-5 i|=$ \qquad
24. $5-i$

$|5-i|=$ \qquad

7.05 Complex Numbers in Rectangular Form

Date: \qquad

Opener: where we have been this year?

1. From right triangle trigonometry: In the triangle to the right, find x and y.

2. From vectors: For a bird flying 20 m West and 35 m North, find the resulting magnitude and direction (measured in standard position) of its flight.
3. From polar coordinates: convert $(-2,-2)$ from rectangular form into polar form.

Complex Numbers:

Rectangular Form, also known as Standard Form:

Graphing a complex number:

Absolute Value of a complex number, also known as the modulus:

Examples: Graph each number in the complex plane and find its modulus.

1. $\mathrm{z}=8-i$

2. $\mathrm{z}=-3+6 i$

Distance \& Midpoint between Complex Numbers

Investigation: Find the distance between complex numbers $\mathrm{z}_{1}=3+i$ and $\mathrm{z}_{2}=-4+3 i$.
First, a visual usually helps, so plot the complex numbers.
How would you find the distance between those two points?

Formula: The distance between two complex numbers is

Examples: Find the distance between the two complex numbers.

1) $z_{1}=5-3 i$ and $z_{2}=-1-8 i$
2) $\mathrm{z}_{1}=-8+4 i$ and $\mathrm{z}_{2}=1+7 i$

Investigation: Find the midpoint between complex numbers $\mathrm{z}_{1}=$ $3+i$ and $\mathrm{z}_{2}=-4+3 i$.

Again, plot the complex numbers so that you can "see" this. How would you find the midpoint between the two points?

Formula: The midpoint between two complex numbers is

Example: Find the midpoint between the two complex numbers
3) $\mathrm{z}_{1}=5-3 i$ and $\mathrm{z}_{2}=-1-8 i$
4. $\mathrm{z}_{1}=-8+4 i$ and $\mathrm{z}_{2}=1+7 i$

7.05 Homework: Rectangular Form of Complex Numbers

Plot each complex number and find its modulus.

4. $z=3-7 i$

Find the distance between the points in the complex plane.
5. $1+2 i,-1+4 i$
6. $-5+i,-2+5 i$
7. $6 i, 3-4 i$
8. $-7-3 i, 3+5 i$

Find the midpoint of the segment connecting the points in the complex plane.
9. $2+i, 6+5 i$
10. $-3+4 i, 1-2 i$
12. $-1+\frac{1}{2} i, \frac{1}{2}+\frac{1}{4} i$

7.06 Adding \& Subtracting Complex Numbers Geometrically

Date: \qquad
Recall that complex numbers take the form a $+\mathrm{b} i$.
When adding or subtracting complex numbers algebraically, real parts are added together or subtracted then imaginary parts are added together or subtracted - similar to combining like terms.

Complex numbers can also be added or subtracted geometrically/graphically by plotting the points in the complex plane and creating vectors with them. Then using geometric vector addition or subtraction.
Examples:

1. $(5+2 i)+(3+6 i)=$
2. $(-3+4 i)+(-10 i)=$

Algebraically:

Geometrically:

3. $(5-i)-(6-5 i)=$

Algebraically:

Geometrically:

7.06 Practice: Evaluate each sum or difference geometrically, then verify your answer using algebra.

3. $(4-2 i)+(-6-2 i)$

5. $(1-5 i)-(3-8 i)$

7. $(2+3 i)-(-3+3 i)$

2. $(-5-i)+(-3+6 i)$

4. $-4 i+(3-i)$

6. $4 i-(4+i)$

8. $(-5-5 i)-(-4-2 i)$

7.07 Complex Numbers in Polar Form

Date: \qquad
Polar Form of Complex Numbers, also know as Trigonometric Form:

Examples: Graph each complex number on the rectangular plane. Then, find its polar form, where $0 \leq \theta$ $\leq 2 п$. Be exact.

1. $\mathrm{z}=10 i$

2. $\mathrm{z}=4-4 \sqrt{3} i$

Examples: Graph each complex number on the polar plane. Then, find its rectangular form. Be exact.
3. $5\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)$

4. $-2\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)$

7.07 Homework: Directions: Be exact. Work these problems without using a calculator! Write the polar form of each complex number where $0 \leq \theta \leq 2 \pi$.

1. $z=2-2 i$
2. $z=3+3 i$
3. $z=-\sqrt{3}+i$
4. $z=-5-5 \sqrt{3} i$

Graph each number on a polar grid. Then express it in rectangular form.
5. $z=3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
6. $z=2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$

7. $z=\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)$

7.08 Operations with Complex Numbers in Polar Form

Date: \qquad
Find the product of two complex numbers in polar form: derive the formula.
For $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$z_{1} \cdot z_{2}=$

Examples: Find the product of the complex numbers in polar form. Answer in both polar form and rectangular form.

1. $z_{1}=4\left(\cos 225^{\circ}+i \sin 225^{\circ}\right)$ and $z_{2}=3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
2. $z_{1}=\sqrt{2}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and $z_{2}=\frac{1}{5}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

Division is the opposite operation from Multiplication. How do you think the pattern changes when we divide two complex numbers in polar form?

For $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$z_{1} \div z_{2}=\frac{z_{1}}{z_{2}}=$

Example: Find the quotient of the complex numbers in polar form: $\frac{z_{1}}{z_{2}}$. Write the answer in both polar form and rectangular form.
3. $z_{1}=2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$ and $z_{2}=8\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
4. $z_{1}=\frac{2}{5}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$ and $z_{2}=\frac{1}{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$
7.08 Practice: Simplify. Express answers in both polar form and in rectangular form. Match angle measurement units to the problem, where $0^{\circ} \leq \theta \leq 360^{\circ}$ or $0 \leq \theta \leq 2 \pi$.

1. $6\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \cdot 4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
2. $5\left(\cos 135^{\circ}+i \sin 135^{\circ}\right) \cdot 2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
3. $3\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \div \frac{1}{2}(\cos \pi+i \sin \pi)$
4. $2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \cdot 2\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
5. $3\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \div 4\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
6. $4\left(\cos \frac{9 \pi}{4}+i \sin \frac{9 \pi}{4}\right) \div 2\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$
7. $\frac{1}{2}\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \cdot 6\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
8. $6\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \div 2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
9. $5\left(\cos 180^{\circ}+i \sin 180^{\circ}\right) \cdot 2\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$
10. $\frac{1}{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \div 3\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

7.09 More Operations with Complex Numbers in Polar Form

Date: \qquad
Powers are the shorthand for repeated Multiplication. How do you think the pattern changes when we raise a complex number in polar form to an exponent?

For $z=r(\cos \theta+i \sin \theta)$
$z^{n}=$

Examples: Find the power of the complex number in polar form. Answer in both polar form and rectangular form.

1. $z^{5}=\left[3 \sqrt{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)\right]^{5}$

Investigation:

Use multiplication (in rectangular form) or the power rule (in polar form): $(-1+\sqrt{3} i)^{3}$

Again, use either method listed above: $(-1-\sqrt{3} i)^{3}$

What do you notice?

What is $\sqrt[3]{8}$ equivalent to? Plot your answers in the complex plane.

Can we use DeMoivre's Theorem (the Power Rule above) to derive a formula for evaluating roots of complex numbers in polar form?

Example: Find all distinct fourth roots of $-5+12 i$.
7.09 Practice: Simplify. Express answers in both polar form and in rectangular form. Match angle measurement units to the problem, where $0^{\circ} \leq \theta \leq 360^{\circ}$ or $0 \leq \theta \leq 2 \pi$.

1. $\left[8\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right]^{3}$
2. $\left[4 \sqrt{3}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)\right]^{6}$
3. $\left[5 \sqrt{2}\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)\right]^{5}$

Convert each complex number into polar form. Then find each power. Answer in polar form where $0 \leq \theta \leq 2 \pi$.
4. $(4 \sqrt{3}-4 i)^{3}$
6. $(-1-i)^{6}$
7. $(-1+\sqrt{3} i)^{5}$

Convert each complex number into polar form. Then find all distinct roots of the complex number. Answer in polar form where $0 \leq \theta \leq 2 \pi$.
8. Sixth roots of i
9. Fourth roots of $4 \sqrt{3}-4 i$
10. Fifth roots of unity (1)

7.10 More Practice with Operations of Complex Numbers

Find the product $z_{1} \cdot z_{2}$ and the quotient $\frac{z_{1}}{z_{2}}$. Express answers in both polar and rectangular form. Match angle measurement units to the problem, where $0^{\circ} \leq \theta \leq 360^{\circ}$ or $0 \leq \theta \leq 2 \pi$.

1. Let $z_{1}=7\left(\cos \frac{9 \pi}{8}+i \sin \frac{9 \pi}{8}\right)$ and $z_{2}=2\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)$
2. Let $z_{1}=4\left(\cos 200^{\circ}+i \sin 200^{\circ}\right)$ and $z_{2}=25\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$

Convert each complex number into polar form. Then find each power. Answer in polar form where $0 \leq \theta \leq 2 \pi$.
3. $(1-\sqrt{3} i)^{4}$
4. $(-\sqrt{2}+\sqrt{2} i)^{5}$

Convert each complex number into polar form. Then find all distinct roots of the complex number. Answer in polar form where $0 \leq \theta \leq 2 \pi$.
5. Fifth roots of 32
6. Fourth roots of $-81 i$

7.11: Test Review

Date \qquad
First plot each point, given as polar coordinates. Then, determine 3 other coordinates for the same point. Use $-360^{\circ} \leq \theta \leq 360^{\circ}$ if in degrees, or use $-2 \pi \leq \theta \leq 2 \pi$ if in radians. *No calculator

1. $A=\left(-4,135^{\circ}\right)$

2. $B=\left(2, \frac{\pi}{3}\right)$

Find the distance between the polar points. Use the polar method: $\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
3. $\left(-6,210^{\circ}\right)$ and $\left(4,-45^{\circ}\right)$
4. $\left(1, \frac{2 \pi}{3}\right)$ and $\left(-5,-\frac{7 \pi}{6}\right)$

Convert the given rectangular coordinates into polar coordinates, where $0 \leq \Theta \leq 2 \pi$.
5. $(-3,3)$ *No calculator
6. $(-4 \sqrt{5},-2)$

Convert the given polar coordinates into rectangular coordinates.
7. $\left(14,210^{\circ}\right){ }^{*}$ No calculator
8. $\left(2 \sqrt{3}, \frac{11 \pi}{7}\right)$

Simply each expression using geometric methods. *No calculator
9. $(3+2 i)+(1-5 i)$

10. $(-4+i)-(1-2 i)$

Find the distance between the complex numbers. *No calculator
11. $(13+2 i)$ and $(9-5 i)$
12. $(-8+5 i)$ and $(-2-i)$

Find the midpoint between the complex numbers. *No calculator
13. $(13+2 i)$ and $(9-5 i)$
14. $(-8+5 i)$ and $(-2-i)$

Graph each complex number, find its modulus (absolute value) and argument (direction), and then write in polar form, where $0 \leq \theta \leq 2 \pi$. *No calculator
15. $z=-1+\sqrt{3} i$

Modulus:

Argument:
Argument:
17. $z=-5 i$

Modulus:

Argument:

Polar:
Polar:
Polar:
18. Convert $z=-5+12 i$ to polar form, where $0 \leq \Theta \leq 2 \pi$.
19. Convert $z=4 \sqrt{3}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ to rectangular form. ${ }^{*}$ No calculator

Simplify each expression using polar methods. Answer in polar form, where $0 \leq \Theta \leq 2 \pi$.
*No calculator
Given: $\mathrm{z}_{1}=3\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right), \mathrm{Z}_{2}=4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right), \mathrm{Z}_{3}=2\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
20. $\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}$
21. $\mathrm{Z}_{2} \cdot \mathrm{Z}_{3}$
22. $\frac{z_{1}}{z_{2}}$
23. $\frac{z_{3}}{z_{2}}$
24. $\left(\mathrm{z}_{2}\right)^{4}$
25. $\left(Z_{3}\right)^{3}$
26. Find the cube roots of z_{2}.
27. Find the fourth roots of Z_{1}

Accelerated Pre-Calculus February \& March 2022 nit 7 - Polar Graphs \& Complex Numbers				
Monday	Tuesday	Wednesday	Thursday	Friday
Feb 21 No School President's Day	22 7.01 Polar Coordinates - Plot points - Multiple representations HW: 7.01 Practice	23 7.02 Polar Coordinates - Convert btw Rectangular \& Polar - Multiple representations - Distance Formula HW: 7.02 Practice	24 7.03 Polar Coordinate Review HW: Polar Review	25 7.04 Quiz- Polar Coordinates \& Converting Points with Rectangular System
28	Mar 1		3	4
Early Release Day 7.05 Complex Numbers in Rectangular Form - Absolute Value - Modulus - Distance Between - Midpoint HW: 7.05 Practice	 Subtracting Complex Coordinates Geometrically HW: 7.06 Practice	Check-In Quiz 7.07 Complex Numbers in Polar Form - Modulus and Argument HW: 7.07 Practice	7.08 Operations with Complex Numbers in Polar Form - Product - Quotient HW: 7.08 Practice	7.09 More Complex Number Operations - Power - Roots HW: 7.09 Practice
7	8		10	11
7.10 More Practice with Operations	7.11 Review	Test: Polar and Complex	TASK: Battleship Star Wars Edition!	No School Teacher Work Day
HW: 7.11 Review	HW: Study!			

Polar Coordinates, (r, $\boldsymbol{\theta}$):

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) \text { if } x>0 \\
\text { or } \theta=\tan ^{-1}\left(\frac{y}{x}\right)+\pi, \text { if } x<0
\end{gathered}
$$

Distance between two points on the polar plane: $\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$

Complex Numbers, Rectangular (Standard) form: $\mathrm{z}=\mathbf{a}+\mathbf{b i}$

Absolute value (modulus): $|z|=\sqrt{a^{2}+b^{2}}$

Distance between 2 complex numbers is the modulus of their difference: $\left|z_{1}-z_{2}\right|$

Midpoint between 2 complex numbers is the average of the values: $\frac{z_{1}+z_{2}}{2}$

Polar (Trigonometric) Form of a complex number: $z=r(\cos \theta+i \sin \theta)$ or $\boldsymbol{r} \boldsymbol{c i s} \theta$
Where $a=r \cos \theta, b=r \sin \theta, r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=\frac{b}{a}$ (remember to add π if a <0)

Multiplication of Complex Numbers
$z_{1} \cdot z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$

Division of Complex Numbers
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right], r_{2} \neq 0$

De Moivre's Theorem (Powers of a Complex Number)
$z^{n}=[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)$
nth Roots of a Complex Number
$\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right), k=0,1,2, \ldots, n-1$

