Name:	Period:
	Peniou

Accel. Pre-Calculus

Unit 7 Packet

Polar Graphs & Complex Numbers

7.01 Polar Coordinates

Date:

Opener: Plotting Polar Points in Desmos

- 1. Go to desmos.com/calculator
- 2. Click the wrench (upper right) and choose the polar grid
- 3. Put the angle setting in degrees (shocking, right?!?)
- 4. Equation 1: r = 5 from -6 ≤ r ≤ 6, scale of 1 *Suggestion*: Turn off the graph by clicking the colored circle to the left of Equation 1
- 5. Equation 2: a = 15 from $-360 \le a \le 360$, scale of 15
- 6. Equation 3: (r cos a, r sin a)
- 7. Equation 4: (x₁, y₁) *shift-underscore makes subscripts*
- 8. Equation 5: $x_1 = 1$, with a slider
- 9. Equation 6: $y_1 = 1$, with a slider

Use the sliders to move the points around.

Points (pun definitely intended!) to consider:

- What happens when r is negative?
- What happens when a is negative?

There is more than one way to plot a point:	:
<u>Rectangular Graph:</u>	

Polar Graph:

Example: Plot the Polar Points: (r, θ) A $(2, 135^{\circ})$

B $(1, \frac{7\pi}{6})$

Example: Name the location of E in 4 different ways with $-2\pi \le \theta \le 2\pi$.

Example: Plot 3 points and determine different pairs of coordinates for them.

7.01 Practice:

Graph each point on a polar grid. (Examples 1 and 2)

1. $R(1, 120^{\circ})$ **3.** $F\left(-2, \frac{2\pi}{3}\right)$ **5.** $Q\left(4, -\frac{5\pi}{6}\right)$ **7.** $D\left(-1, -\frac{5\pi}{3}\right)$ **9.** $C(-4, \pi)$ **11.** $P(4.5, -210^{\circ})$

 ARCHERY The target in competitive target archery consists of 10 evenly spaced concentric circles with score values from 1 to 10 points from the outer circle to the center. Suppose an archer using a target with a 60-centimeter radius shoots arrows at (57, 45°), (41, 315°), and (15, 240°). (Examples 1 and 2)

- Plot the points where the archer's arrows hit the target on a polar grid.
- b. How many points did the archer earn?

Find three different pairs of polar coordinates that name the given point if $-360^\circ \le \theta \le 360^\circ$ or $-2\pi \le \theta \le 2\pi$. (Example 3)

15.
$$(-2, 300^{\circ})$$

17. $\left(-3, \frac{2\pi}{3}\right)$
19. $\left(-5, -\frac{4\pi}{3}\right)$
21. $(-1, -240^{\circ})$

7.02 Converting Polar Coordinates

The polar and rectangular grids do overlap so that a location can take on coordinates from either system.

If you know *r* and θ , how do you calculate *x* and *y*?

If you know *x* and *y*, how do you calculate *r* and θ ?

Example: Find the rectangular coordinates for each point given in polar coordinates. 1. P (4, -60°) 2. Q $(-2, \frac{3\pi}{4})$

Example: For each point given in rectangular coordinates, find <u>four</u> unique polar coordinates with $-2\pi \le \theta \le 2\pi$. 3. A (2, -5) 4. B (-9, -4)

5

Distance between 2 Points in the Polar Plane

Review: How do we find the distance between two points in the Cartesian Plane?

New method for distance using the Polar Plane:

Example: Find the distance between the points $\left(-3, \frac{\pi}{3}\right)$ and $\left(5, -\frac{11\pi}{6}\right)$

Example: A radar detects 2 plane s at the same altitude. Their polar coordinates are (5 miles, 310°) and (2 miles, 192°). How far apart are the planes?

7.02 Practice: Complete the odd problems.

Find the rectangular coordinates for each point with the given polar coordinates. Round to the nearest thousandth if necessary. (Example 1)

1. $(2, \frac{\pi}{4})$	2. $\left(\frac{1}{4}, \frac{\pi}{2}\right)$
3. (5, 240°)	4. (2.5, 250°)
5. $\left(-2, \frac{4\pi}{3}\right)$	6. (−13, −70°)
7. $(3, \frac{\pi}{2})$	8. $\left(\frac{1}{2}, \frac{3\pi}{4}\right)$
9. (-2, 270°)	10. (4, 210°)
11. $\left(-1, -\frac{\pi}{6}\right)$	12. $(5, \frac{\pi}{3})$

Find 4 pairs of polar coordinates for each point with the given rectangular coordinates for $[-2\pi, 2\pi]$. Round to the nearest thousandth if necessary. (Example 2)

13.	(7, 10)	14.	(-13, 4)	15.	(-6, -12)
16.	(4, -12)	17.	(2, -3)	18.	(0, -173)
19.	(a,3a),a>0	20.	(-14, 14)	21.	(52, -31)
22.	(3b, -4b), b > 0	23.	(1, -1)	24.	$(2, \sqrt{2})$

25. DISTANCE Standing on top of his apartment building, Nicolas determines that a concert arena is 53° east of north. Suppose the arena is exactly 1.5 miles from Nicolas' apartment. (Example 3)

- a. How many miles north and east will Nicolas have to travel to reach the arena?
- b. If a football stadium is 2 miles west and 0.5 mile south of Nicolas' apartment, what are the polar coordinates of the stadium if Nicolas' apartment is at the pole?

7.03 Quiz Review:

Date _____

Polar Coordinates, Equations, and Distance

1) Graph each point on the polar grid. Find three other pairs of polar coordinates that name the point

if $-360^{\circ} \le \theta \le 360^{\circ}$

 $\text{if} - 2\pi \leq \theta \leq 2\pi$

2) Given the polar distance formula between two points $A(r_1, \theta_1)$ and $B(r_2, \theta_2)$: $AB = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$, find the distance between A and B. a) $A(4, 200^\circ) B(-3, 60^\circ)$ b) $A\left(-7, \frac{5\pi}{6}\right) B\left(2, -\frac{4\pi}{3}\right)$

3) Find the rectangular coordinates for each point with the given polar coordinates. Answer in exact form.

4) Find four unique polar coordinates for each point given as rectangular coordinates. Use $-360^{\circ} \le \theta \le 360^{\circ}$. Round to the nearest thousandths.

a) (-1, 5) b) (3, -7)

a) _____ b) _____

d)_____

Use $-2\pi \le \theta \le 2\pi$. Round to the nearest thousandths. c) $(-5\sqrt{3}, -5)$ d) (4, 3)

c) _____

7.04 Complex Numbers Review	Date:		
Recall that the imaginary number <i>i</i> is defined such that $i^2 = -1$.			
1. $i = $ 2. $i^2 = $	3. <i>i</i> ³ =	4. <i>i</i> ⁴ =	
5. $i^{11} = _$ 6. $i^{18} = _$	7. i ⁶⁷ =	8. <i>i</i> ⁷²⁴ =	
A complex number has two parts: the real part ar 9. The standard form for complex number is Perform the given operation. Write your answer	·	x number.	
$10. (-4 + 7i) + (2 - 3i) = ____$	-		
12. (5 + 8 <i>i</i>) · (2 – 10 <i>i</i>) =			
14. $(3 - 5i) \cdot (3 - 5i) = $	15. (3 – 5 <i>i</i>) · (3 + 5 <i>i</i>) =		

#14: two factors that are the exact same multiplied together (just like a binomial squared). **#15:** two factors that only have the sign in the middle changed. They are <u>conjugates.</u>

Which product resulted in an <u>entirely real</u> value having <u>no imaginary part</u>? _____

Generalize it as a formula by simplifying: $(a + bi) \cdot (a - bi) =$

State the conjugate (a - bi) of the given complex number (a + bi).

16. 9 + 4*i* _____ 17. 5 - 2*i* _____ 18. -3 + 7*i* _____

Use the conjugate of the denominator to <u>rationalize</u> the following fractions.

$$19. \frac{1+i}{5-2i} = _ 20. \frac{5-6i}{-3+7i} = _$$

Graph the number on the complex plane and find its absolute value (distance from zero).

21. 4 - 3i

23. -2 + 4i

24. 5 *– i*

7.05 Complex Numbers in Rectangular Form

Date: _____

Opener: where we have been this year?

1. From <u>right triangle trigonometry</u>: In the triangle to the right, find x and y.

- 2. From <u>vectors</u>: For a bird flying 20m West and 35m North, find the resulting magnitude and direction (measured in standard position) of its flight.
- 3. From <u>polar coordinates</u>: convert (-2, -2) from rectangular form into polar form.

Complex Numbers: *Rectangular Form,* also known as *Standard Form*:

Graphing a complex number:

Absolute Value of a complex number, also known as the *modulus*:

Examples: Graph each number in the complex plane and find its modulus.

Distance & Midpoint between Complex Numbers

Investigation: Find the distance between complex numbers $z_1 = 3 + i$ and $z_2 = -4 + 3i$.

First, a visual usually helps, so plot the complex numbers.

How would you find the distance between those two points?

Formula: The distance between two complex numbers is

Examples: Find the distance between the two complex numbers.

1) $z_1 = 5 - 3i$ and $z_2 = -1 - 8i$ 2) $z_1 = -8 + 4i$ and $z_2 = 1 + 7i$

Investigation: Find the midpoint between complex numbers $z_1 = 3 + i$ and $z_2 = -4 + 3i$.

Again, plot the complex numbers so that you can "see" this.

How would you find the midpoint between the two points?

Formula: The midpoint between two complex numbers is

Example: Find the midpoint between the two complex numbers

3) $z_1 = 5 - 3i$ and $z_2 = -1 - 8i$ 4. $z_1 = -8 + 4i$ and $z_2 = 1 + 7i$

7.05 Homework: Rectangular Form of Complex Numbers

Plot each complex number and find its modulus.

Find the distance between the points in the complex plane.

5. 1 + 2i, -1 + 4i 6. -5 + i, -2 + 5i

7. 6*i*, 3 – 4*i* 8. –7 – 3*i*, 3 + 5*i*

Find the midpoint of the segment connecting the points in the complex plane.

9.
$$2 + i, 6 + 5i$$
 10. $-3 + 4i, 1 - 2i$

11.
$$7i, 9 - 10i$$
 12. $-1 + \frac{1}{2}i, \frac{1}{2} + \frac{1}{4}i$

7.06 Adding & Subtracting Complex Numbers Geometrically

Recall that complex numbers take the form a + b*i*.

When adding or subtracting complex numbers algebraically, real parts are added together or subtracted then imaginary parts are added together or subtracted - similar to combining like terms.

Complex numbers can also be added or subtracted geometrically/graphically by plotting the points in the complex plane and creating vectors with them. Then using geometric vector addition or subtraction.

Examples: 1. (5 + 2i) + (3 + 6i) = 2. (-3 + 4i) + (-10i) =

Algebraically:

Geometrically:

Algebraically:

Geometrically:

Date: ____

7.06 Practice: Evaluate each sum or difference geometrically, then verify your answer using algebra.

7. (2 + 3i) - (-3 + 3i)

8. (-5 - 5i) - (-4 - 2i)

Date: _____

Polar Form of Complex Numbers, also know as *Trigonometric Form*:

Examples: Graph each complex number on the rectangular plane. Then, find its polar form, where $0 \le \theta \le 2\pi$. Be exact.

Examples: Graph each complex number on the polar plane. Then, find its rectangular form. Be exact.

3. $5(\cos 120^\circ + i \sin 120^\circ)$

7.07 Homework: Directions: Be exact. Work these problems without using a calculator!Write the polar form of each complex number where $0 \le \theta \le 2\pi$.1. z = 2 - 2i2. z = 3 + 3i

3.
$$z = -\sqrt{3} + i$$
 4. $z = -5 - 5\sqrt{3}i$

Graph each number on a polar grid. Then express it in rectangular form.

7.08 Operations with Complex Numbers in Polar Form

Date: _____

Find the *product* of two complex numbers in polar form: derive the formula.

For $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$

 $z_1 \cdot z_2 =$

Examples: Find the product of the complex numbers in polar form. Answer in <u>both</u> polar form and rectangular form.

1. $z_1 = 4(\cos 225^\circ + i \sin 225^\circ)$ and $z_2 = 3(\cos 90^\circ + i \sin 90^\circ)$

2.
$$z_1 = \sqrt{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$$
 and $z_2 = \frac{1}{5} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$

Division is the opposite operation from Multiplication. How do you think the pattern changes when we divide two complex numbers in polar form?

For $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ $z_1 \div z_2 = \frac{z_1}{z_2} =$

Example: Find the quotient of the complex numbers in polar form: $\frac{z_1}{z_2}$. Write the answer in <u>both</u> polar form and rectangular form.

3. $z_1 = 2(\cos 210^\circ + i \sin 210^\circ)$ and $z_2 = 8(\cos 60^\circ + i \sin 60^\circ)$

4.
$$z_1 = \frac{2}{5} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$
 and $z_2 = \frac{1}{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$

7.08 Practice: Simplify. Express answers in **both** polar form and in rectangular form. Match angle measurement units to the problem, where $0^{\circ} \le \theta \le 360^{\circ}$ or $0 \le \theta \le 2\pi$.

1.
$$6\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \cdot 4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

2. $5(\cos 135^\circ + i \sin 135^\circ) \cdot 2(\cos 45^\circ + i \sin 45^\circ)$

3.
$$3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \div \frac{1}{2}(\cos\pi + i\sin\pi)$$

4. $2(\cos 90^\circ + i \sin 90^\circ) \cdot 2(\cos 270^\circ + i \sin 270^\circ)$

5.
$$3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \div 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

6.
$$4\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right) \div 2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

7.
$$\frac{1}{2}(\cos 60^\circ + i \sin 60^\circ) \cdot 6(\cos 150^\circ + i \sin 150^\circ)$$

8.
$$6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \div 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

9. $5(\cos 180^\circ + i \sin 180^\circ) \cdot 2(\cos 135^\circ + i \sin 135^\circ)$

10.
$$\frac{1}{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \div 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

7.09 More Operations with Complex Numbers in Polar Form

Date: _____

Powers are the shorthand for repeated Multiplication. How do you think the pattern changes when we raise a complex number in polar form to an exponent?

For $z = r(\cos \theta + i \sin \theta)$ $z^n =$

Examples: Find the power of the complex number in polar form. Answer in <u>both</u> polar form and rectangular form.

1. $z^5 = \left[3\sqrt{2}\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)\right]^5$

Investigation:

Use multiplication (in rectangular form) <u>or</u> the power rule (in polar form): $(-1 + \sqrt{3}i)^3$

Again, use either method listed above: $(-1 - \sqrt{3}i)^3$

What do you notice?

What is $\sqrt[3]{8}$ equivalent to? Plot your answers in the complex plane.

Can we use DeMoivre's Theorem (the Power Rule above) to derive a formula for evaluating roots of complex numbers in polar form?

Example: Find all distinct fourth roots of -5+12*i*.

7.09 Practice: Simplify. Express answers in **both** polar form and in rectangular form. Match angle measurement units to the problem, where $0^{\circ} \le \theta \le 360^{\circ}$ or $0 \le \theta \le 2\pi$. 1. $\left[8\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right]^{3}$

$$2. \left[4\sqrt{3} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) \right]^6$$

3. $[5\sqrt{2}(\cos 120^\circ + i \sin 120^\circ)]^5$

Convert each complex number into polar form. Then find each power. Answer in polar form where $0 \le \theta \le 2\pi$.

4. $(4\sqrt{3} - 4i)^3$

6. $(-1-i)^6$

Convert each complex number into polar form. Then find all distinct roots of the complex number. Answer in polar form where $0 \le \theta \le 2\pi$.

8. Sixth roots of *i*

9. Fourth roots of $4\sqrt{3} - 4i$

10. Fifth roots of unity (1)

7.10 More Practice with Operations of Complex Numbers

Find the product $z_1 \cdot z_2$ and the quotient $\frac{z_1}{z_2}$. Express answers in both polar and rectangular form. Match angle measurement units to the problem, where $0^\circ \le \theta \le 360^\circ$ or $0 \le \theta \le 2\pi$.

1. Let
$$z_1 = 7\left(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}\right)$$
 and $z_2 = 2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$

2. Let
$$z_1 = 4(\cos 200^\circ + i \sin 200^\circ)$$
 and $z_2 = 25(\cos 150^\circ + i \sin 150^\circ)$

Convert each complex number into polar form. Then find each power. Answer in polar form where $0 \le \theta \le 2\pi$.

3.
$$(1 - \sqrt{3}i)^4$$
 4. $(-\sqrt{2} + \sqrt{2}i)^5$

Convert each complex number into polar form. Then find all distinct roots of the complex number. Answer in polar form where $0 \le \theta \le 2\pi$.

5. Fifth roots of 32 6. Fourth roots of -81i

7.11: Test Review

Date _____

First plot each point, given as polar coordinates. Then, determine 3 other coordinates for the same point. Use $-360^{\circ} \le \theta \le 360^{\circ}$ if in degrees, or use $-2\pi \le \theta \le 2\pi$ if in radians. ***No calculator**

Find the distance between the polar points. Use the polar method: $\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$

3. (-6, 210°) and (4, -45°) 4.
$$\left(1, \frac{2\pi}{3}\right)$$
 and $\left(-5, -\frac{7\pi}{6}\right)$

Convert the given rectangular coordinates into polar coordinates, where $0 \le \Theta \le 2\pi$.

5. (-3, 3) *No calculator 6. (- $4\sqrt{5}$, -2)

Convert the given polar coordinates into rectangular coordinates.

7. (14, 210°) *No calculator 8.
$$(2\sqrt{3}, \frac{11\pi}{7})$$

Simply each expression using geometric methods. *No calculator

Find the distance between the complex numbers. ***No calculator** 11. (13 + 2i) and (9 - 5i)12. (-8 + 5i) and (-2 - i)

Find the midpoint between the complex numbers.	*No calculator
13. $(13 + 2i)$ and $(9 - 5i)$	14. $(-8 + 5i)$ and $(-2 - i)$

Graph each complex number, find its modulus (absolute value) and argument (direction), and then write in polar form, where $0 \le \theta \le 2\pi$. ***No calculator**

Polar:

Polar:

18. Convert z = -5 + 12i to polar form, where $0 \le \Theta \le 2\pi$.

19. Convert $z = 4\sqrt{3}(\cos 30^\circ + i \sin 30^\circ)$ to rectangular form. *No calculator

Polar:

Simplify each expression using polar methods. Answer in polar form, where $0 \le \Theta \le 2\pi$. ***No calculator**

Given: $z_1 = 3\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right), z_2 = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right), z_3 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ 20. $z_1 \cdot z_2$ 21. $z_2 \cdot z_3$

22.
$$\frac{z_1}{z_2}$$
 23. $\frac{z_3}{z_2}$

24. $(z_2)^4$ 25. $(z_3)^3$

26. Find the cube roots of z_2 . 27. Find the fourth roots of z_1

33

Accelerated Pre-Calculus February & March 2022 Unit 7 – Polar Graphs & Complex Numbers

Monday	Tuesday	Wednesday	Thursday	Friday
Feb 21	22	23	24	25
No School President's Day	7.01 PolarCoordinatesPlot pointsMultiple representations	 7.02 Polar Coordinates Convert btw Rectangular & Polar Multiple representations Distance Formula 	7.03 Polar Coordinate Review	7.04 Quiz- Polar Coordinates & Converting Points with Rectangular System
	HW: 7.01 Practice	HW: 7.02 Practice	HW: Polar Review	
28	Mar 1	2	3	4
Early Release Day 7.05 Complex Numbers in Rectangular Form • Absolute Value • Modulus • Distance Between	7.06 Adding & Subtracting Complex Coordinates Geometrically	Check-In Quiz 7.07 Complex Numbers in Polar Form • Modulus and Argument	7.08 Operations with Complex Numbers in Polar FormProductQuotient	7.09 More Complex Number OperationsPowerRoots
 Distance between Midpoint HW: 7.05 Practice 	HW: 7.06 Practice	HW: 7.07 Practice	HW: 7.08 Practice	HW: 7.09 Practice
7	8	9	10	11
7.10 More Practice with Operations	7.11 Review	Test: Polar and Complex	TASK: Battleship - Star Wars Edition!	No School Teacher Work Day
HW: 7.11 Review	HW: Study!			

Distance between two points on the polar plane: $\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$

Complex Numbers, Rectangular (Standard) form: z = a + bi

Absolute value (modulus): $|z| = \sqrt{a^2 + b^2}$

<u>Distance between 2 complex numbers</u> is the modulus of their difference: $|z_1 - z_2|$

<u>Midpoint between 2 complex numbers</u> is the average of the values: $\frac{z_1+z_2}{2}$

Polar (Trigonometric) Form of a complex number: $z = r(\cos \theta + i \sin \theta)$ or $r \operatorname{cis} \theta$ Where $a = r \cos \theta$, $b = r \sin \theta$, $r = \sqrt{a^2 + b^2}$, and $\tan \theta = \frac{b}{a}$ (remember to add π if a < 0)

<u>Multiplication of Complex Numbers</u> $z_1 \cdot z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

 $\frac{\text{Division of Complex Numbers}}{\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)], r_2 \neq 0$

<u>De Moivre's Theorem (Powers of a Complex Number)</u> $z^{n} = [r(\cos \theta + i \sin \theta)]^{n} = r^{n}(\cos n\theta + i \sin n\theta)$

 $\frac{nth \text{ Roots of a Complex Number}}{\sqrt[n]{r}\left(\cos\frac{\theta + 2\pi k}{n} + i\sin\frac{\theta + 2\pi k}{n}\right), k = 0, 1, 2, \dots, n-1$