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End-of-Unit 10 Review — Infinite Sequences and Series
Lessons 10.54 through 10,10

1. If the infinite series S = Z( 1]”*1

T is approximated by S, = Z( 1)”“
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is approximated by the partial sum with 15 terms, what is the alternating
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3. LetP(x) =3 —2x? + 5x* be the fourth-degree Taylor Polynomial for the function f about x = 0. What is
the value of f(0)? ' as i A 4/
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4. The function f has derivatives of all orders for all real numbers with f(2) = =2, f'(2) = 4, f''(2) = 8, and

f""(2) = 14. Using the third-degree Taylor Polynomial for f about x = 2, what is the approximation of
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Let f be a function that has derivatives of all orders for all real numbers and let P,(x) be the fourth-degree
Taylor Polynomial for f about x = 0. If(n) (x)| < nn—+? for1 < n < 6 and all values of x. Of the following,

which is the smallest value of k for which the Lagrange error bound guarantees that |f(1) — P,(1)| < k?
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The third Maclaurin polynomial for sinx is given by f(x) = x — = . If this polynomial is used to
approximate sin(0.3), what is the Lagrange error bound? _ T
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7. Find the interval of convergence for the power series Z = DH:(_:_C; Dl
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8. If the radius of convergence of the power series = S)nx is 5, what is the interval of convergence?
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9. Which of the following is an expression for a function f that has the Maclaurin Series 1 + + ¥ + + -+
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10. Find the Maclaurin Series for the function f(x) = 2 sinx3
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. Write the first four non-zero terms.
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11. Itis known the Maclaurin series for the function ﬁ-; is defined by Z(—l)"x”. Use this fact to find the first
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four nonzero terms and the general term for the power series expansion for ol
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12. LetT(x) =7—3(x—3) +5(x—3)% —2(x — 3)% + 6(x — 3)* be the fourth-degree Taylor Polynomial for

the function f about x = 3. Find the third-degree Taylor Polynomial for the derivative f’ about x = 3 and
use it to approximate f’(3.3).
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LaGrange Error Bound_*This is similar {0 the Alternating Series Remainder. However, this method offers a way to determine fhe
maximum error (remainder) when we do a Taylor polynomial approximation using a certain number of terms for a specific

fanetion. 7
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the (n +1)™ (first unused) derivative at “z”  *We are not expected to find the exact value of z. (If we could, then an
approximation would not be necessary) *We want to maximize the (n+1)" derivative on the interval from [x , ¢] in order to find
a safe upper bound for the l £ (z)

actual approximation can live. **College Board will provide strictly increasing and decreasing functions. (So we only have to
. choose between f{ ¢) and f(x) (the endpoints). This will allow us to determine the max value much more accurately,

(x—¢) | * The remainder for an n'* degree polynomial is found by taking

*The maximum error bound is the worst case scenario for the interval in which our
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*This means that the maximum error for the n™ term

partial Sum S, Is no greater than the absolute value of the
first unused term a,,, :




