Ch. 4.3 Related Rates Exercise Problems (Day 1)

Pg. 286-291 #9, 10, 22, 23, 35, 38

9. Volume of a Cube If each edge of a cube is increasing at the constant rate of 3 cm/s, how fast is the volume of the cube increasing when the length x of an edge is 10 cm?

Cauch increasing when the length x of

$$V = x^{3}$$

$$\frac{dV}{dt} = 3x^{2} \left(\frac{dx}{dt}\right)$$

$$\frac{dx}{dt} = 3cm/sec$$

$$X = 10cm$$

$$\frac{dV}{dt} = 3(10)^{2}(3)$$

$$\frac{dV}{dt} = 900 cm^{3}/sec$$

10. Volume of a Sphere If the radius of a sphere is increasing at 1 cm/s, find the rate of change of its volume when the radius is 6 cm.

$$V = \frac{4}{3}\pi r^{3}$$

$$\frac{dr}{dt} = 1 \text{ cm/sec}$$

$$\frac{dV}{dt} = 3 \cdot \frac{4}{3}\pi r^{2} \left(\frac{dr}{dt}\right)$$

$$r = 6 \text{ cm}$$

$$\frac{dV}{dt} = 4\pi r^{2} \left(\frac{dr}{dt}\right)$$

$$\frac{dV}{dt} = 7$$

$$\frac{dV}{dt} = 4\pi r^{2} \left(\frac{dr}{dt}\right)$$

$$\frac{dV}{dt} = 7$$

22. Filling a Tank Water is flowing into a vertical cylindrical tank of diameter 6 m at the rate of 5 m³/min. Find the rate at which the depth of the water is rising.

depth of the water is rising.

$$V = \pi r^{2}h$$

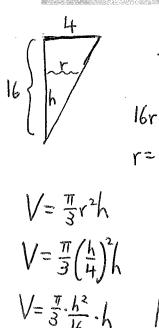
$$V = \pi (3)^{2}h$$

$$V = 9\pi h$$

$$V = 9\pi h$$

$$V = 9\pi h$$

$$V = 9\pi (3)^{2}h$$


$$V =$$

$$\frac{5}{9\pi} = \frac{4}{32}$$

$$\frac{dh}{dt} = \frac{5}{9\pi} m/min \approx 0.177 m/min$$

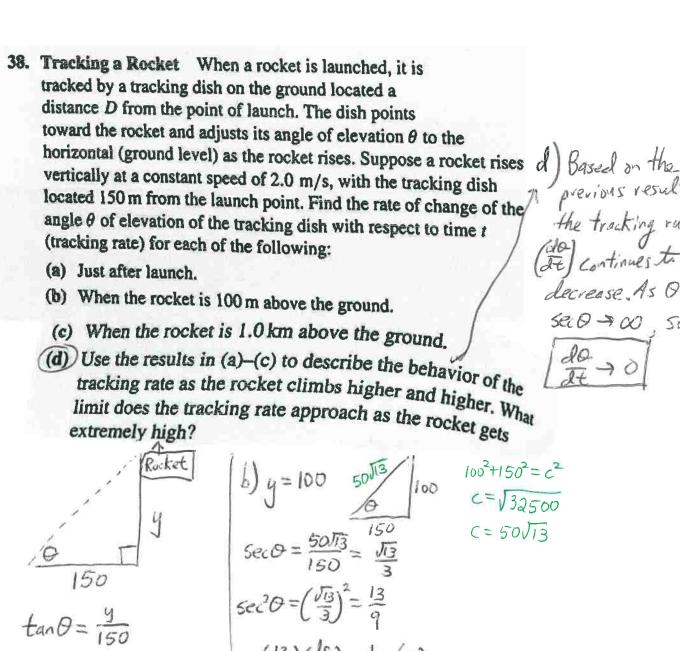
23. Fill Rate A container in the form of a right circular cone (vertex down) has radius 4 m and height 16 m. See the figure. If water is poured into the container at the constant rate of 16 m³/min, how fast is the water level rising when the water is 8 m deep? Hint: The volume V of a cone of radius r and height h

is $V=\frac{1}{2}\pi r^2 h$,

- $V = \frac{\pi}{49} h^3$ $\frac{dV}{dt} = 3 \cdot \frac{\pi}{48} h^2 \left(\frac{dh}{dt}\right)$ $r = \frac{4}{16}h = \frac{1}{4}h = \frac{h}{4} / \frac{dV}{dt} = \frac{3\pi}{48}h^2 (\frac{dk}{dt})$

- 16 m³/min
- Given: dv = 16m3/min
- $\frac{dV}{dt} = \frac{\pi}{16}h^{2}(\frac{dh}{dt})$ $16 = \frac{\pi}{16}(8)^{2}(\frac{dh}{dt})$ $16 = \frac{\pi}{16}(8)^{2}(\frac{dh}{dt})$ $16 \cdot \frac{16}{\pi \cdot 64} = \frac{dh}{dt}$ $\frac{dV}{dt} = \frac{\pi}{\pi} h^{2}(\frac{dh}{dt})$ $16 \cdot \frac{16}{\pi \cdot 64} = \frac{dh}{dt}$
- 35. Falling Ladder An 8-m ladder is leaning against a vertical wall. If a person pulls the base of the ladder away from the wall at the rate of 0.5 m/s, how fast is the top of the ladder moving down the wall when the base of the ladder is
- dx Az=0.5

- (a) 3 m from the wall?
- (b) 4 m from the wall?
- (c) 6 m from the wall?

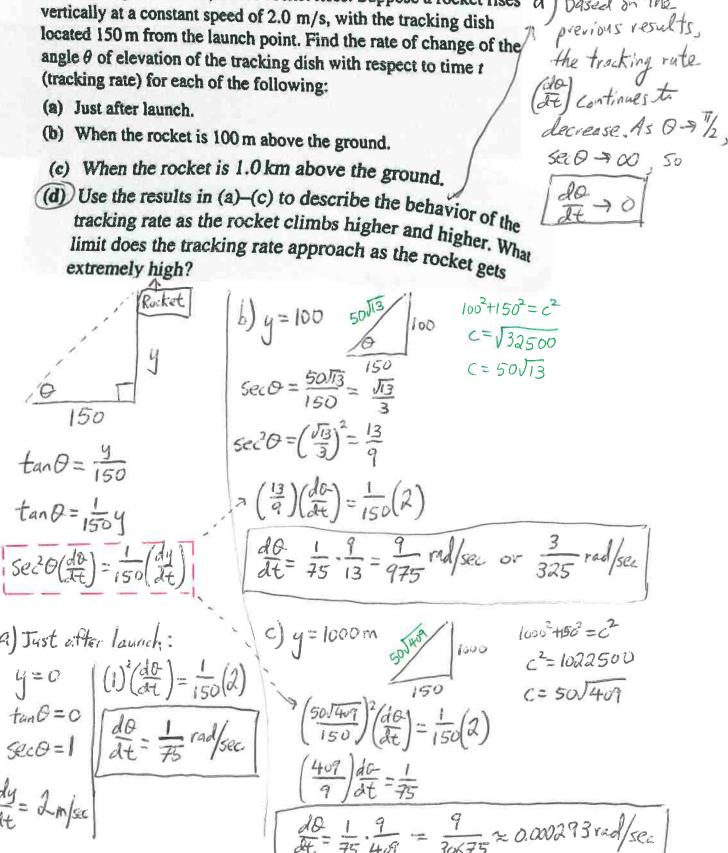

2(4)(0.5)+2(4/3)(2)10

$$\frac{8}{x^2+y^2=8^2}$$

$$2x(\frac{dx}{dt})+2y(\frac{dy}{dt})=0$$

- 2(3)(0.5)+2155(dy)=0;
- 2(6)(0.5) + 2(2)7)(24)=0

= -0.5 m/s



tand= 1504

Sec20(do) = 150(dy)

a) Just after launch:

dy = 2 m/se

