L'Hôpital's Rule (or Bernoulli's Rule)

If $\lim_{x\to a} \frac{f(x)}{g(x)}$ yields either of the indeterminate forms $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

The rule works great, but it only works with the two forms $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$. There are other indeterminate forms including 0^0 , 1^∞ , $\infty - \infty$, $0 \cdot \infty$, and ∞^0 . We can still use the rule, but we have to first convert them to $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$.

- 1.If Indeterminate form is 0^0 , 1^∞ , or $\infty^0 \Rightarrow$ rewrite as equation and use Log Differentiation
- 2. If Indeterminate form is $\infty \infty \rightarrow$ find common denominator, which will get the expression into a single quotient, ready to evaluate.
- 3. If Indeterminate form is $0 \cdot \infty \Rightarrow$ rewrite as a quotient, bring ∞ or 0 down to denominator to create $\frac{0}{0} or \pm \frac{\infty}{\infty}$

Example 1:

a)
$$\lim_{x\to\infty} e^{-x} \sqrt{x} =$$

b)
$$\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) =$$

Example 2:

a)
$$\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^x =$$

b)
$$\lim_{x\to 0^+} x^x =$$

c)
$$\lim_{x \to \infty} x^{1/x} =$$