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BC Calculus — 10.10b Notes — Lagrange Error Bound ﬁow _pdr u‘M % -M.z
Xppoxidatson from +he
act

Exact value = Approximate value + Remainder

el Value »
f6) =, P+ RO ot o e
(7;‘!1];:.,- Paﬁnam.’dﬂ) (RQM'-JQV)
R = £6)-P(
e | R = [#60)- Bty

! \
b s s PR (m) L
fG) = F(©) + fe)(x — ) + LD LOCD o O LR !

— 1 ._.."

- e -~ -

' : .
(nt) Nl NGO ’ nh N '

.F " C) (X-—c) aly l{ = _..(2_),*()(_6) ;‘/we waat o Kow e 1 -'LAL
C"‘Hy (n=+1)! 3:%-1‘951‘ poﬁ!'£/€ value n{ 4 his
‘ . [A'H) ﬂlel’lt’lﬂl'lt/( ON an /’ﬂ'/—(?\lﬂj

,{Ggragge Error Bound \

Let f(x) be differentiable through the order n + 1. The error between the Taylor Polynomial

and f(x) is bounded by:
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I. The fourth degree Maclaurin polynomial for cosx is given by ps(x) = 1 — % + %— If this
polynomial is used to approximate ¢0s(0.2), what is the Lagrange error bound?
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2. Use a third degrec Taylor polynomial on the interval [0,1] for ¢* centered about x = O fo
a:pg)mxsmm ¢*. What is the emor bound of this approximation?
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3. Whatis the smallest order Taylor Polynomial centered at x = 1 which will approximate ¢*~* on
the interval [0, 3] with a Lagrange error bound less than 17
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Practice Problems:
1. The third Maclaurin polynomial for sinx is given by p(x) = x “*;;,f;f" » ¥ this polynomial is used fo approximate
sin(0.1), what is the Lagrange crror bound? .
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2. Ifthe Taylor Polynomial for approximating cos x is given by 1 — L +Z  whatis the upper bound for the error
in the approximation of cos(0.3)?
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If the Taylor Polynomial about x = 0 for the approximation of e* is given by 1 + x + x— + l— = + o what
is the upper bound for the error in the approximation of e?
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4. Let f be a function that has derivatives of all orders for all real numbers and let P;(x) be the third-degree Taylor
Polynomial for f about x = 0. | fo (x)l < ni+1’ for 1 < n < 5 and all values of x. Of the following, which is

the smallest value of k for which the Lagrange error bound guarantees that |f (1) — P3(1)| < k?
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5. The function f has derivatives of all orders for all real numbers, f® (x) = e%°5* . If the third-degree Taylor
Polynomial for f about x = 0 is used to approximate f on the interval [0,1], what is the Lagrange error bound?




6. The Taylor series for a function f about x = 3 is given by Z( H" 2:

x < 5. If the third-degree Taylor Polynomial for f about x = 3 is used to approximate f (14—3) , what is the

(x — 3)* and converges to f for 0 <

alternating series error bound?

7. Let f be a polynomial function with nonzero coefﬁments such that f(x) = ag + a;x + ayx? + azx® + a,x* +
asx®. T,(x) is the fourth-degree Taylor Polynomial for f about x = ¢ such that T, = by + by (x — ¢) +
b, (x — ¢)? + bs(x — ¢)3 + b,y(x — ¢)*. Based on the Lagrange error bound, f(x) — T,(x) must equal which

of the following? |
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8. Let P(x) be the sixth-degree Taylor Polynomial for a function f about x = 0. Information about the maximum
of the absolute value of selected derivatives of f over the interval 0 < x < 1.5 is given below.
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What is the smallest value of k for which the Lagrange error bound guarantees that | f(1.5) — P(1.5)| < k ?
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9. The function f has derivatives of all orders for all real numbers. Values of f and its first four derivatives at
x = 2 are given in the table.
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a. Write the third-degree Taylor Polynomial for f about x = 2, and use it to approximate f(1.5).

Px)= £ (<)+ £L0)[x-2] 'F;.'f.)tx a) . 4’“(){ 2’

ﬁ,(x): 6 + -lJZ(x,a) % l_g(&ﬂa)z :

..-(x 2)
W)= €= 136ed) ¢ qcay 44 g9

F[IS’)'” P(Ib) §-ia(-¢. 5)+9(~5 ,) ‘f(—c)

/475 |



b. The fourth derivative of f satisfies the inequality |f ) (x)l < 48 for all x > 1. Use the Lagrange error
bound to show that the approximation found in part (a) differs from f(1.5) by no more than —:;.
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10. Let h be a function having derivatives of all orders for x > 0. Selected values for the first four derivatives of h
are given for x = 3. Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about
x = 3 approximates h(2.9) with an error less than 3 x 107,
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10.12 Lagrange Error Bound Test Prep

11. Calculator allowed.
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The function f has derivatives of all orders for all real numbers. Values of f and its first four
derivatives at x = 3 are given in the table.
a. Write an equation for the line tangent to the graph of f at x = 3 and use it to approximate f(2.5).
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c=3
b. Write the third-degree Taylor polynomial for f about x = 3, and use it to approximate f(2.5).
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c. Is there enough information to determine whether f has a critical point at x = 2.57 If not, explain
why not. If so, determine whether f(2.5) is a relative maximum, relative minimum, or neither,
and give a reason for your answer.
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d. The fourth derivative of f satisfies the inequality | f® (x)| < 48 for all x > 2. Use the Lagrange
error bound to show that the approximation found in part (b) differs from f(2.5) by no more than
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e. What is the coefficient of the (x — 3)3 term in the Taylor series for f”, the derivative of f, about
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