BC Calculus - 10.1 Notes - Convergent & Divergent Infinite Series

Recall: Writing terms of a sequence.

$$a_n = \{1 + (-2)^n\}$$

$$-1, 5, -7, 17, -31$$

Sequence: A collection of numbers that are in one-to-one correspondence with positive integers.

$$\frac{26}{6}$$
 $\frac{80}{24}$

$$\frac{80}{24}$$

$$\frac{242}{120}$$

Monotonic Sequences never decreases or never increases	Bounded Sequences
$a_1 \le a_2 \le a_3 \le \dots \le a_n$	$a_n \leq M$ (upper bound / above)
or	$a_n \ge N$ (lower bound / below)
$a_1 \ge a_2 \ge a_3 \ge \dots \ge a_n$	$\{a_n\}$ bounded if both are true

Infinite Series:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n$$

Partial Sum:

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

 a_n vs S_n :

 a_n is an expression that gives the

 S_n is an expression that gives the

1. Use the following sequence 2, 4, 6, 8, 10 to find a_4 and S_4 .

$$\sum_{n=1}^{\infty} a_n =$$

Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty} a_n$, the n^{th} partial sum is $S_n = a_1 + a_2 + a_3 + \dots + a_n$. If the sequence of the partial sum $\{S_n\}$ to S, then the series $\sum_{n=1}^{\infty} a_n$

limit S is called the sum of the series.

The

Likewise, if $\{S_n\}$

then the series

2. Does the series converge or diverge? $\sum_{n=1}^{\infty} \frac{1}{2^n}$

- 3. Use a calculator to find the partial sum S_n of the series $\sum_{n=1}^{\infty} \frac{10}{n(n+2)}$ for n=200,1000.
- 4. Does the series converge or diverge? $\sum_{n=0}^{\infty} n^{n}$

10.1 Convergent and Divergent Infinite Series

Practice

Calculus

1. Given the infinite series $\sum_{n=1}^{\infty} (-1)^n$, find the sequence of partial sums S_1, S_2, S_3, S_4 , and S_5 .

2. Find the sequence of partial sums S_1 , S_2 , S_3 , S_4 , and S_5 for the infinite series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \cdots$.

- 3. If the infinite series $\sum_{n=1}^{\infty} a^n$ has nth partial sum $S_n = (-1)^{n+1}$ for $n \ge 1$, what is the sum of the series?
- 4. The infinite series $\sum_{n=1}^{\infty} a^n$ has nth partial sum $S_n = \frac{n}{4n+1}$ for $n \ge 1$. What is the sum of the series?
- 5. Use a calculator to find the partial sum S_n of the series $\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$ for n=100,500,1000.

6. Show that the sequence with the given nth term $a_n = 1 + 2n$ is monotonic.

7. What is the *n*th partial sum of the infinite series $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}$?

8. Which of the following could be the *n*th partial sum for the infinite series $\sum_{n=1}^{\infty} \frac{1}{4^n}$?

(A)
$$S_n = \frac{1}{3} \left(1 + \frac{1}{4^n} \right)$$

(A)
$$S_n = \frac{1}{3} \left(1 + \frac{1}{4^n} \right)$$
 (B) $S_n = \frac{1}{3} \left(1 - \frac{1}{4^{n+1}} \right)$ (C) $S_n = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$ (D) $S_n = \frac{1}{4} \left(1 - \frac{1}{3^n} \right)$

(C)
$$S_n = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$$

(D)
$$S_n = \frac{1}{4} \left(1 - \frac{1}{3^n} \right)$$

9. If the infinite series $\sum_{n=1}^{\infty} a_n$ is convergent and has a sum of $\frac{7}{8}$, which of the following could be the *n*th partial

(A)
$$S_n = \frac{7n+1}{8n^2+1}$$

(B)
$$S_n = \frac{7n^2+1}{8n+1}$$

(C)
$$S_n = 2\left(\frac{7}{8} - \frac{1}{n+2} - \frac{1}{n+3}\right)$$

(D)
$$S_n = \left(\frac{7}{8} - \frac{1}{n+2} - \frac{1}{n+3}\right)$$

10. Which of the following sequences with the given nth term is bounded and monotonic?

(A)
$$a_n = 2 + (-1)^n$$
 (B) $a_n = \frac{n^2}{n+1}$

(B)
$$a_n = \frac{n^2}{n+1}$$

$$(C) \ a_n = \frac{3n}{n+2}$$

(D)
$$a_n = \frac{\cos n}{n}$$