- 1. Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}$, if it exists.

- (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) The series diverges.
- $2. \sum_{k=1}^{\infty} \frac{7}{3^{k-1}}$
 - (A) converges and equals $\frac{7}{4}$.
 - (B) converges and equals $\frac{14}{3}$.
 - (C) converges and equals $\frac{21}{2}$.
 - (D) diverges.
- 3. The repeating decimal 0.1212... can be expressed as the fraction

- (A) $\frac{4}{33}$ (B) $\frac{3}{25}$ (C) $\frac{4}{99}$ (D) $\frac{303}{250}$
- 4. Which of the following series diverge?
 - I. $\sum_{k=1}^{\infty} \left(\sqrt{2}\right)^{k-1}$ II. $\sum_{k=1}^{\infty} -\frac{3}{4^k}$ III. $\sum_{k=1}^{\infty} \frac{1}{k}$

- (A) I and II only
- (B) I and III only
- (C) II and III only
 - (D) I, II, and III

- 5. Determine whether the series $\sum_{k=1}^{\infty} \frac{7^{k-2}}{8^{k+1}}$ converges or diverges. If it converges, find its sum.
 - (A) converges and equals $\frac{1}{64}$
 - (B) converges and equals $\frac{1}{56}$
 - (C) converges and equals $\frac{1}{8}$
 - (D) The series diverges.

- 6. An object hanging on a spring is pulled downward a distance of 100 cm from its equilibrium position (the origin) and released. It recoils upward past the origin to a height 90 cm above the origin. It continues to oscillate up and down about the origin, but with each oscillation the spring travels only $\frac{9}{10}$ of the last distance traveled.
 - (a) Write an infinite series that models the object's movement.
 - (b) Find the sum of the infinite series.
 - (c) Interpret the sum of the infinite series in the context of the problem.