BC Calculus - 9.2 Notes - 2nd Derivative of Parametric Equations

Second Derivative of a Parametric Equation

The second derivative of a parametric given by x = f(t) and y = g(t) is

Given the following parametric equations, find $\frac{d^2y}{dx^2}$ in terms of t. 1. $x(t) = \sqrt{t}$ and $y(t) = \frac{1}{2}(t^2 - 2)$ for $t \ge 0$. 2. $x = 3\cos t$ and $y = 4\sin t$.

1.
$$x(t) = \sqrt{t}$$
 and $y(t) = \frac{1}{2}(t^2 - 2)$ for $t \ge 0$.

2.
$$x = 3\cos t$$
 and $y = 4\sin t$.

^{3.} At t = 1, find the concavity of the graph defined parametrically by $x = t^3 + 1$ and $y = t^4 + t$.

9.2 practice problems

Given the following parametric equations, find $\frac{d^2y}{dx^2}$ in terms of t. 1. $x(t) = e^{-2t}$ and $y(t) = e^{2t}$. 2. $x(t) = t^3$ and $y(t) = t^4 + 1$ for t > 0.

1.
$$x(t) = e^{-2t}$$
 and $y(t) = e^{2t}$.

2.
$$x(t) = t^3$$
 and $y(t) = t^4 + 1$ for $t > 0$.

3.
$$x(t) = at^3$$
 and $y(t) = bt$, where a and b are positive constants.

4.
$$\frac{dx}{dt} = 4$$
 and $\frac{dy}{dt} = \sin(t^2)$.

5.
$$x = e^t$$
 and $y = te^{-t}$.

6.
$$x = t^2 + 1$$
 and $y = 2t^3$.

- 7. Given a curve defined by the parametric equations $x(t) = 2 t^2$ and $y(t) = t^2 + t^3$. Determine the open t-intervals on which the curve is concave up or down.
- 8. If $x(\theta) = 2 + \sec \theta$ and $y(\theta) = 1 + 2 \tan \theta$, Find the slope and the concavity at $\theta = \frac{\pi}{6}$.

- 9. If $x = \cos \theta$ and $y = 3 \sin \theta$, find the slope and concavity at $\theta = 0$.
- 10. If $x(t) = t \ln t$ and $y(t) = t + \ln t$, determine values of t where the graph is concave up.

11. If
$$x = 3t^2 - 1$$
 and $y = \ln t$, what is $\frac{d^2y}{dx^2}$ in terms of t ?

A.
$$\frac{1}{6}t^2$$

B.
$$-\frac{1}{3}t^{-3}$$

A.
$$\frac{1}{6}t^2$$
 B. $-\frac{1}{3}t^{-3}$ C. $-\frac{1}{18}t^{-4}$ D. $-\frac{1}{2}t^{-4}$ E. $6t^4$

D.
$$-\frac{1}{2}t^{-4}$$

E.
$$6t^4$$

12. If $x = \theta - \cos \theta$ and $y = 1 - \sin \theta$, find the slope and concavity at $\theta = \pi$.

- A. Slope: -1, Concave down
- B. Slope: π , Concave up
- C. Slope: 1, Concave down

- D. Slope: 1, Concave up
- E. Slope: $\frac{1}{\pi}$, Concave up