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BC Calculus — 9.4-prep Notes — Graphing Polar Equations

.a\

A rectangular coordinate system is only one way to
navigate through a Euclidean plane. Such coordinates,

( X, y) » known as rectangular coordinates, are useful for

expressing functions of y in terms of x, Curves that are not
functions are often more easily expressing in an alternative
coordinate system called polar coordinates.

In a polar coordinate system, we still have the traditional
x~ and y- axes. The intersection of these axes, the old
origin, is called the pole. Similar to navigating on the Unit
Circle, we can now get to any point in 2-D space by
specifying an independent choice of an angle, @, from the
initial ray, polar axis, then walking out along that terminal
ray a specified amount, r, in either direction.

Although the angle is the independent variable, we express

the point in the polar plane as (#,8). The point to the right would have coordinates of (4: Z««} .

Example 1:
Find several other equivalent polar coordinates for the point shown above, then find the equivalent
rectangular coordinate.

Why use polar coordinates? Graphs that aren’t functions in rectangular form #'(x) can still be functions in
polar form r(ﬂ) . Some of these curves can be quite elaborate and are more easily expressed as polar,
rather than rectangular equations, as the following calculator exploration will demonstrate,




Jixample 2 :
Put your graphing caleulator in POLAR mode and RADIAN mode. Graph the following equations on your 3;2
calculator, sketch the graphs on this sheet, and answer the questions, ’

r = cosf = 3¢0s0 1 r = 45ind
e - . o - :
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What do you notice about the above graphs?
Example 3a:
r o= 24 20050 1 =14 2cos0 r = 2+ cost
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Example 3b:

T = 2 - 28ind

re= 14 28in0
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Which graphs go through the pole?
Which ones do not go through the pole?

Which ones have an inner loop?

Example 4:

r = 300830 r = 25in50 r = 4$In70
L e ey




 Example 5:
(37) r = 3c0s2b
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What do you notice about the above graphs?
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r=a 1+ bsing
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