BC Calculus - 9.4a Notes - Defining and Differentiating in Polar Form

- (x, y) is for a rectangular coordinate system.
- (r, θ) is for a polar coordinate system.
- r is a directed distance from the origin to a point P.

 θ is the directed angle

Polar □ Rectangular	Rectangular \Longrightarrow Polar
$x = r \cos \theta$	$\tan \theta = \frac{y}{x}$
$y = r \sin \theta$	$r^2 = x^2 + y^2$

	rm to rectangular form.

1.
$$r\cos\theta = -4$$

$$2. 4r\cos\theta = r^2$$

$$3. \ \frac{4}{2\cos\theta - \sin\theta} = r$$

Slope of a Curve in Polar Form

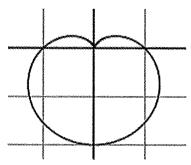
A curve in polar form is given by $r = f(\theta)$, then its rectangular coordinates are given by $\begin{cases} x = f(\theta) \cos \theta \\ y = f(\theta) \sin \theta \end{cases}$. The derivative $\frac{dy}{dx}$ is defined the same way as the derivative of a parametric equation.

$$\frac{dy}{dx} =$$

The following is an example of a common problem found on the AP Exam!

4. What is the slope of the line tangent to the polar curve $r = 1 + 2 \sin \theta$ at $\theta = 0$?

5. Find the value(s) of θ where the polar graph $r = 1 - \sin \theta$ on the interval $0 \le \theta \le 2\pi$ has horizontal and vertical tangent lines.



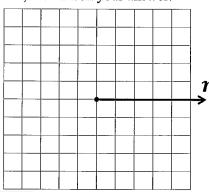
Practice Problems

Problems 1-5 are pre-calculus review on polar form.

- 1. Find the corresponding rectangular coordinates for the polar coordinates $(7, \frac{5\pi}{4})$.
- 2. Calculator active. Find two sets of polar coordinates for the rectangular coordinate (4, -2). Limit your answers on the interval $0 \le \theta \le 2\pi$.

- 3. Convert the rectangular equation $x^2 + y^2 = 16$ to a polar equation.
- 4. Convert the polar equation $r = 3 \sec \theta$ to a rectangular equation.

5. Sketch the polar curve $r = 2\cos 3\theta$ for $0 \le \theta \le \pi$ without a calculator, then check your answer.



Find the slope of the line tangent to the polar curve at the given value of θ , 6. $r = 3\theta$ at $\theta = \frac{\pi}{2}$. 7. $r = \frac{5}{3 - \cos \theta}$ at $\theta = \frac{3\pi}{2}$.

6.
$$r = 3\theta$$
 at $\theta = \frac{\pi}{2}$.

7.
$$r = \frac{5}{3-\cos\theta}$$
 at $\theta = \frac{3\pi}{2}$.

8.
$$r = \cos \theta$$
 at $\theta = \frac{\pi}{3}$.

9.
$$r = 2(1 - \sin \theta)$$
 at $\theta = 0$.

- 10. A particle moves along the polar curve $r=3\cos\theta$ so that $\frac{d\theta}{dt}=2$. Find the value of $\frac{dr}{dt}$ at $\theta=\frac{\pi}{3}$. Hint: remember implicit differentiation?
- 11. A polar curve is given by the equation $r = \frac{15\theta}{\theta^2 + 1}$ for $\theta \ge 0$. What is the instantaneous rate of change of r with respect to θ when $\theta = 1$?

- 12. Find the value(s) of θ where the polar graph $r = 2 2\cos\theta$ has a horizontal tangent line on the interval $0 \le \theta \le 2\pi$. Use a graphing calculator to verify your answers.
- 13. Find the value(s) of θ where the polar graph $r = 3 3 \sin \theta$ has a vertical tangent line on the interval $0 \le \theta \le 2\pi$. Use a graphing calculator to verify your answers.

14. Calculator active. For a certain polar curve $r = f(\theta)$, it is known that $\frac{dx}{d\theta} = \cos \theta - \theta \sin \theta$ and $\frac{dy}{d\theta} = \sin \theta + \theta \cos \theta$. What is the value of $\frac{d^2y}{dx^2}$ at $\theta = 3$?

9.4 Differentiating in Polar Form

15. A polar curve is given by the differentiable function $r = f(\theta)$ for $0 \le \theta \le 2\pi$. If the line tangent to the polar curve at $\theta = \frac{\pi}{6}$ is vertical, which of the following must be true?

A.
$$f\left(\frac{\pi}{6}\right) = 0$$

B.
$$f'\left(\frac{\pi}{6}\right) = 0$$

C.
$$\frac{1}{2}f\left(\frac{\pi}{6}\right) - \frac{\sqrt{3}}{2}f'\left(\frac{\pi}{6}\right) = 0$$

A.
$$f\left(\frac{\pi}{6}\right) = 0$$
 B. $f'\left(\frac{\pi}{6}\right) = 0$ C. $\frac{1}{2}f\left(\frac{\pi}{6}\right) - \frac{\sqrt{3}}{2}f'\left(\frac{\pi}{6}\right) = 0$ D. $\frac{\sqrt{3}}{2}f'\left(\frac{\pi}{6}\right) - \frac{1}{2}f\left(\frac{\pi}{6}\right) = 0$

- 16. Calculator active. For $0 \le t \le 8$, a particle moving in the xy-plane has position vector $\langle x(t), y(t) \rangle =$ $\langle \sin(2t), t^2 - t \rangle$, where x(t) and y(t) are measured in meters and t is measured in seconds.
 - a. Find the speed of the particle at time t = 3 seconds. Indicate units of measure.

b. At time t = 5 seconds, is the speed of the particle increasing or decreasing? Explain your answer.

- c. Find the total distance the particle travels over the time interval $0 \le t \le 6$ seconds.
- d. At time t = 8 seconds, the particle begins moving in a straight line. For $t \ge 8$, the particle travels with the same velocity vector that it had at time t = 8 seconds. Find the position of the particle at time t = 11seconds.