Chapter 2.1-2.5 Quiz Review

(Limit Definition of Derivative, Derivative Rules, Product \& Quotient Rule)
No Calculators (answers can be left unsimplified)
Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

1. $w(x)=\ln x ; \quad 1 \leq x \leq 7$
2. $s(t)=-t^{2}-t+4 ;[1,5]$
t represents seconds
s represents feet
3. Find the derivative of $y=2 x^{2}+3 x-1$ by using the definition of the derivative. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
4. For the function $h(t), h$ is the temperature of the oven in Fahrenheit, and t is the time measured in minutes.
a. Explain the meaning of the equation $h(15)=420$.
b. Explain the meaning of the equation $h^{\prime}(43)=-11$.

Find the derivative of each function.

5. $f(x)=4-\frac{1}{2 x^{2}}$
6. $g(x)=3 \sqrt{x}-\frac{6}{x^{2}}+5 \pi^{3}$
7. $h(x)=4 e^{x}-2 \cos x$
8. $s(t)=t^{2} \sin (t)$
9. $d(t)=3 \sqrt{t} \ln t$
10. $y=\frac{4}{x}-\sec x$
11. $h(x)=\frac{2-x}{x+2}$

Find the equation of the tangent line of the function at the given x-value.
12. $f(x)=-2 x^{3}+3 x$ at $x=-1$.
13. $f(x)=4 \sin x-2$ at $x=\pi$
14. Find the equation for the normal line of $y=\frac{1}{2} x^{2}+\frac{3}{4} x-4$ at $x=-3$
15. If $f(x)=3 \sin x-2 e^{x}$ find $f^{\prime}(0)$. No calculator!
16. Use the table below to estimate the value of $d^{\prime}(120)$. Indicate units of measures.

Explain the meaning of $d^{\prime}(120)$ within context of this table.

t seconds	2	13	60	180	500
$d(t)$ feet	10	81	412	808	2,105

17. Is the function differentiable at $x=2$?

$$
f(x)= \begin{cases}3 x-3 x^{2}-5, & x<2 \\ 7-9 x, & x \geq 2\end{cases}
$$

18. What values of a and b would make the function differentiable at $x=4$?

$$
f(x)= \begin{cases}a \sqrt{x}+b x^{2}-1, & x<4 \\ \frac{16}{x}+b x, & x \geq 4\end{cases}
$$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.
20. $\lim _{h \rightarrow 0} \frac{9(5+h)-10(5+h)^{2}+(205)}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$

Function: $f(x)=$
Instantaneous rate at $x=$
21.

x	$h(x)$	$h^{\prime}(x)$	$r(x)$	$r^{\prime}(x)$
-2	-3	2	-2	4

a. $f(x)=-h(x) r(x)$

Find $f^{\prime}(-2)$.
b. $g(x)=\frac{h(x)+r(x)}{r(x)}$

Find $g^{\prime}(-2)$.
c. $w(x)=(4-2 h(x))(1-r(x))$ Find $w^{\prime}(-2)$.
22. At what x-value(s) does the function $f(x)=\frac{x^{4}}{4}-3 x^{3}+9 x^{2}+7$ have a horizontal tangent?
23. If $f(x)=\cos x+\sin x$, find $f^{\prime}\left(\frac{\pi}{3}\right)$
24. $\quad S(x)$ is the number of students in Mr. Kelly's class and x is the number of years since 2015 .
a. Explain the meaning of $S(3)=127$.
b. Explain the meaning of $S^{\prime}(3)=4$.
25. Use the graphs of \boldsymbol{f} and \boldsymbol{g} to find the following.
a. $h(x)=f(g(x))$. Find the average rate of change on the interval $[2,4]$.
b. $j(x)=g(f(x))$. Find the average rate of change on the interval $[-3,2]$.

