BC Calculus Ch. 12.3 Notes Velocity and Acceleration

Now we look to combine our knowledge of parametric equations, curves, vectors, and vector-valued functions to form a
model for motion along a curve.

-, . . Definitions of "feéaﬁsty and Acceleration
Position vector: r(t) =x(t)i + y(t)]

If x and y are twice-differentiable functions of 4, and r is a vector- 1&1.11&:3 function
given }W (s} = ={0i + p(0)], then the v&l&m}r vector, acceleration vector, and
x‘_@&ﬁd at time f are as ;@E{aﬁ;,
Velocity = v(1) =11 = x{di + »y10j
Aceeleration = ald) = r'l) = x"(Di + y"U1)§

ed = |v0)| = el = VIXOT + 0P

EXAMPLE | Finding Velocity and Acceleration Along a Plane Curve
RN AR

Find the velocity veclor, speed, and acceleration vector of & particle that moves along
the plane curve C described by

¥
rt)=2 Slu;t; i+ 2cos 3 i Position vector

Example 2: Sketching Velocity and Acceleration Vectors in the Plane

Sketch the path of an object moving along the plane curve given by
vl = (12 — 40 + ¢j Position vecior

and find the velocity and acceleration vectors whent = 0and? = 2.




Example 3: Finding a Position Function by Integration

An object starts from rest at the point P(1, 2, 0) and moves with 4n acceleration of
alff=j+ 2k - Accelerstion vector

where ||a{s}]| is measured in feet per second per second. Find the location of the object
after 7 = 2 seconds.

THEOREM 12.3  Position Function for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial height 4
with initiz] speed v; and angle of elevation # is described by the vector function

r(r) = (v, cos B)ri + [k + {vysin ) — 3 gﬁ} i
where g is the gravitational constant.
Example 4: Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at 100 feet per second and at an angle of
45° with respect 10 the ground, as shown in Figure 12.18. Find the maximum height
reached by the baseball. Will it clear a 10-foot-high fence located 300 feet from home
plate?
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the plane curve C described by
F e
r(f) = 2sinzi + 2cos3 Position vecior
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) lr ol = oty « st = g7 :_D
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and find the velocity and acceleration vectors when ¢ = 0 and 7 = 2.
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Neglecting air resistance, the path of a projectile launched from an initial height A
with initial speed v; and angle of elevation § is described by the vector function

(1) = (v, cos Bt + [h + (v, sin 8t ~ % g?‘]j

where g is the gravitational constant. ; |
Example 4: Describing the Path of a Baseball \\“\_\

A baseball is hit 3 feet above ground level at 100 feet per second and at an angle of [, 3 v, =/00 B=45"

457 with respect to the ground, as shown in Figure 12.18. Find the maximum height
reached by the baseball. Will it clear a 10-foot-high fence located 300 feet from home = 3 1C’f/ Y
plate?
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