Ch. 12.3 Notes

Velocity and Acceleration

Now we look to combine our knowledge of parametric equations, curves, vectors, and vector-valued functions to form a model for motion along a curve.

Position vector: r(t) = x(t) i + y(t) j

Definitions of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and r is a vector-valued function given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, then the velocity vector, acceleration vector, and speed at time t are as follows.

Velocity =
$$\mathbf{v}(t)$$
 = $\mathbf{r}'(t)$ = $x'(t)\mathbf{i} + y'(t)\mathbf{j}$
Acceleration = $\mathbf{a}(t)$ = $\mathbf{r}''(t)$ = $x''(t)\mathbf{i} + y''(t)\mathbf{j}$
Speed = $\|\mathbf{v}(t)\|$ = $\|\mathbf{r}'(t)\|$ = $\sqrt{[x'(t)]^2 + [y'(t)]^2}$

EXAMPLE I Finding Velocity and Acceleration Along a Plane Curve

Find the velocity vector, speed, and acceleration vector of a particle that moves along the plane curve C described by

$$\mathbf{r}(t) = 2\sin\frac{t}{2}\mathbf{i} + 2\cos\frac{t}{2}\mathbf{j}.$$

Position vector

Example 2: Sketching Velocity and Acceleration Vectors in the Plane

Sketch the path of an object moving along the plane curve given by

$$\mathbf{r}(t) = (t^2 - 4)\mathbf{i} + t\mathbf{j}$$

Position vector

and find the velocity and acceleration vectors when t = 0 and t = 2.

Example 3: Finding a Position Function by Integration

An object starts from rest at the point P(1, 2, 0) and moves with an acceleration of

$$\mathbf{a}(t) = \mathbf{j} + 2\mathbf{k}$$
 Acceleration vector

where $\|\mathbf{a}(t)\|$ is measured in feet per second per second. Find the location of the object after t = 2 seconds.

THEOREM 12.3 Position Function for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial height h with initial speed v_0 and angle of elevation θ is described by the vector function

$$\mathbf{r}(t) = (v_0 \cos \theta)t\mathbf{i} + \left[h + (v_0 \sin \theta)t - \frac{1}{2}gt^2\right]\mathbf{j}$$

where g is the gravitational constant.

Example 4: Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at 100 feet per second and at an angle of 45° with respect to the ground, as shown in Figure 12.18. Find the maximum height reached by the baseball. Will it clear a 10-foot-high fence located 300 feet from home plate?

BC Calculus

Ch. 12.3 Notes

Velocity and Acceleration

Now we look to combine our knowledge of parametric equations, curves, vectors, and vector-valued functions to form a model for motion along a curve.

Position vector: r(t) = x(t) i + y(t) j

Definitions of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and r is a vector-valued function given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, then the velocity vector, acceleration vector, and speed at time t are as follows.

Velocity =
$$\mathbf{v}(t)$$
 = $\mathbf{r}'(t)$ = $x'(t)\mathbf{i} + y'(t)\mathbf{j}$
Acceleration = $\mathbf{a}(t)$ = $\mathbf{r}''(t)$ = $x''(t)\mathbf{i} + y''(t)\mathbf{j}$
Speed = $\|\mathbf{v}(t)\|$ = $\|\mathbf{r}'(t)\|$ = $\sqrt{[x'(t)]^2 + [y'(t)]^2}$

Finding Velocity and Acceleration Along a Plane Curve

Find the velocity vector, speed, and acceleration vector of a particle that moves along the plane curve C described by

$$\mathbf{r}(t) = 2\sin\frac{t}{2}\mathbf{i} + 2\cos\frac{t}{2}\mathbf{j}.$$

a)
$$V(t) = r'(t) = 2\cos(\frac{1}{2}) \cdot \frac{1}{2}i - 2\sin(\frac{1}{2}) \cdot \frac{1}{2}j = \left[\cos(\frac{1}{2})i - \sin(\frac{1}{2})j\right]$$

b) $||r'(t)|| = \sqrt{\cos^2(\frac{1}{2})} + \sin^2(\frac{1}{2}) = \sqrt{1} = \boxed{1}$
c) $a(t) = r''(t) = -\sin(\frac{1}{2}) \cdot \frac{1}{2}i - \cos(\frac{1}{2}) \cdot \frac{1}{2}j = -\frac{1}{2}\sin(\frac{1}{2})i - \frac{1}{2}\cos(\frac{1}{2})j$

Example 2: Sketching Velocity and Acceleration Vectors in the Plane

Sketch the path of an object moving along the plane curve given by

$$\mathbf{r}(t) = (t^2 - 4)\mathbf{i} + t\mathbf{j}$$

Position vector

and find the velocity and acceleration vectors when t = 0 and t = 2.

$$a(t) = r''(t) = 2i$$
 $v(0) = 2(0)i + j = j$
 $a(0) = 2i$

V(t) = r(t) = 2ti + i

$$V(0) = \lambda(0)i + j = j$$
 $V(2) = \lambda(2)i + j = 4i + j$
 $a(0) = 2i$ $a(2) = 2i$

Example 3: Finding a Position Function by Integration

An object starts from rest at the point P(1, 2, 0) and moves with an acceleration of

$$\mathbf{a}(t) = \mathbf{j} + 2\mathbf{k}$$

Acceleration vector

where $\|\mathbf{a}(t)\|$ is measured in feet per second per second. Find the location of the object after t = 2 seconds.

*Integrate twice to find position function.

$$v(t) = \int a(t) dt = \int j + 2k dt = tj + 2k + C$$

$$v(0) = C_1 i + C_2 j + C_3 k = 0 \rightarrow C_1 = C_2 = C_3 = 0$$

$$v(t) = tj + 2kk$$

$$r(t) = \int v(t) dt = \int tj + 2tk dt = \frac{t^2}{2}j + t^2k + C$$

C = C4i + C5j + C6K r(0) = C4i+Ci+Ck=i+

*C=C,i+C2j+C3K

$$r(t) = li + \left(\frac{t^2}{2} + 2\right)j + t^2k$$

THEOREM 12.3 Position Function for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial height h with initial speed v_0 and angle of elevation θ is described by the vector function

$$\mathbf{r}(t) = (v_0 \cos \theta)t\mathbf{i} + \left[h + (v_0 \sin \theta)t - \frac{1}{2}gt^2\right]\mathbf{j}$$

where g is the gravitational constant.

Example 4: Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at 100 feet per second and at an angle of 45° with respect to the ground, as shown in Figure 12.18. Find the maximum height reached by the baseball. Will it clear a 10-foot-high fence located 300 feet from home plate?

$$k=3$$
, $V_0 = 100$, $0 = 45^{\circ}$
 $g = 32 \text{ ft/s}^2$

plate?

$$v(t) = \begin{bmatrix} 100 \cos(\sqrt{4}) \end{bmatrix} t i + \begin{bmatrix} 3 + (100 \sin(\sqrt{4}))t - 16t^2 \end{bmatrix} i$$

$$= 100 \left(\frac{\sqrt{2}}{2} \right) t i + \left[3 + 100 \left(\frac{\sqrt{2}}{2} \right) t - 16t^2 \right] i = \left[50\sqrt{2} t \right) i + \left[3 + 50\sqrt{2} t - 16t^2 \right] i$$

$$v(t) = v'(t) = 50\sqrt{2} i + \left(50\sqrt{2} - 32t \right) i$$

$$t \text{ May light accomplished if } (4) = 50\sqrt{2} - 32t = 0 \quad t = \frac{25\sqrt{2}}{16} \approx \sqrt{2} \cdot 2$$

* Max height occurs where
$$y'(t) = 0 * y'(t) = 50\sqrt{2} - 32t = 0 t = \frac{25\sqrt{2}}{16} \approx \sqrt{2.21 \sec 3}$$

*Find t when
$$x(t)=300$$
 ft.
 $50\sqrt{2}t=300$

* Find y(t) when
$$t = 4.24 \text{ secs}$$

 $y = 3 + 50\sqrt{2}(4.24) - 16(4.24)^2 = 15 \text{ ft.}$

* Therefore, ball clears 10 ft. fence for Homerun