
BC Calculus Unit 9 Parametric & Polar Test Review WS #2

Calculators Allowed: Show all work that lead to your answer to earn full credit.

1. What is the length of the curved defined by the parametric equations $x(t) = 9 \cos t$ and $y(t) = 9 \sin t$ for the interval $0 \le t \le 2\pi$?

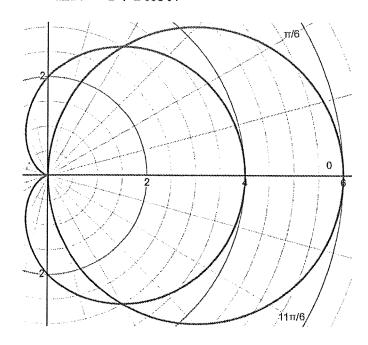
2. Calculator active. Find the area of the region inside the circle r = 1 and outside the cardiod $r = 1 - \cos \theta$.

3. If $x(t) = 2t^3$ and $y(t) = t^3 - t$, what is $\frac{d^2y}{dx^2}$ in terms of t?

- 4. The position of a remote-controlled vehicle moving along a flat surface at time t is given by (x(t), y(t)), with velocity vector $v(t) = \langle 3t^2, 2t \rangle$ for $0 \le t \le 3$. Both x(t) and y(t) are measured in meters, and time t is in seconds. When t = 0, the remote-controlled vehicle is at the point (1, 2).
 - a. Find the acceleration vector of the remote-controlled vehicle when t = 2.
 - b. Find the position of the remote-controlled vehicle when t=3.

5. Which of the following gives the length of the path described by the parametric equations $x = 2e^{3t}$ and $y = 3t^2 + t$ from $0 \le t \le 1$?

A.
$$\int_0^1 \sqrt{12e^{6t} + (6t+1)^2} dt$$


B.
$$\int_0^1 \sqrt{4e^{6t} + (6t+1)^2} dt$$

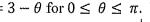
C.
$$\int_0^1 \sqrt{4e^{6t} + 9t^4 + t^2} dt$$

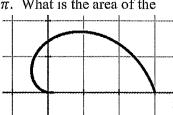
D.
$$\int_0^1 \sqrt{36e^{6t} + (6t+1)^2} dt$$

- 6. Calculator active. A polar curve is given by $r = \frac{5}{3-\sin\theta}$. What angle θ corresponds on the curve with a y-coordinate of -1?
- 7. If f is a vector-valued function defined by $(te^t, 2t^2e^t)$ then f''(1) = ?

8. Calculator active. Find the area of the region common to the two regions bounded by the curves $r = 6 \cos \theta$ and $r = 2 + 2 \cos \theta$.

9. Find the vector-valued function f(t) that satisfies the initial conditions $f(0) = \langle 3, 0 \rangle$, and $f'(t) = \langle 4 \sin \frac{t}{2}, -2 \cos 2t \rangle$.

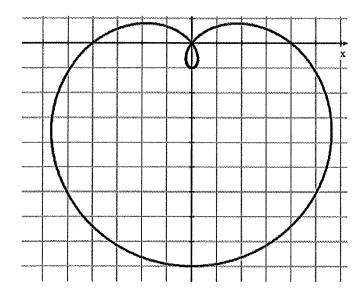

10. If $x = 7\cos\theta$ and $y = 7\sin\theta$, find the slope and the concavity at $\theta = \frac{\pi}{4}$.


11. Calculator active. At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = \langle 9t^2, e^t \rangle$. If the particle is at point (3, 4) at time t = 0, how far is the particle from the origin at time t = 2?

12. Find the slope of the tangent line to the polar curve $r = 2\cos\theta - 1$ at the point where $\theta = \frac{3\pi}{2}$.

13. Find the slope of the tangent line to the curve defined parametrically by $x(t) = 2 \cos t$ and $y(t) = 3 \sin^2 t$ at $t = \frac{\pi}{3}$.

14. Calculator active. The graph shows the polar curve $r = 3 - \theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded by the curve and the x-axis?



15. At time t, $0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the vectorvalued function, $f(t) = \langle \cos 2t, \sin 4t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{4}$.

16. Find an equation for the line tangent to the curve given by the parametric equations $x(t) = t^2 + 1$ and $y(t) = t^3 + t + 1$, when t = 2.

17. Calculator active. Find the total area enclose by the inner loop of the polar curve $r = 4 - 5 \sin \theta$, shown in the figure.

