BC Calculus Unit 9 Parametric and Polar Test Review WS #3

Calculators Allowed: Show all work that lead to your answer to earn full credit.

1) What is the slope of the tangent line to the curve defined parametrically by $x(t) = \sqrt{t}$ and $y(t) = \frac{1}{4}(t^2 - 4)$, $t \ge 0$ at the point (2,3)?

If $x = \sin \theta$ and $y = 2 \cos \theta$, what is $\frac{d^2y}{dx^2}$ in terms of θ ?

3) Which of the following gives the length of the path described by the parametric equations $x = e^{2t}$ and y = 1 - 2t from $0 \le t \le 3$?

A.
$$\int_0^3 \sqrt{4e^{2t}+4} dt$$
 B. $\int_0^3 \sqrt{2e^{2t}+2} dt$

B.
$$\int_0^3 \sqrt{2e^{2t} + 2} \, dt$$

C.
$$\int_0^3 \sqrt{4e^{4t} + 4} \, dt$$
 D. $\int_0^3 \sqrt{e^{4t} + 4} \, dt$

D.
$$\int_0^3 \sqrt{e^{4t} + 4} \, dt$$

The position of a particle moving in the xy-plane is 4) defined by the vector-valued function, $f(t) = (t^3 - 9t^2 + 1, 2t^3 - 15t^2 - 36t + 1).$ For what value of t is the particle at rest?

5) At time t, $0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the vector-valued function, $f(t) = \langle e^{2t} \cos t \rangle$, $e^{2t} \sin t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{2}$.

6) Calculator active. At time $t \ge 0$, a particle moving in the xy-plane has a velocity vector given by $v(t) = (2, 2^{-t^2})$. If the particle is at point $\left(1, \frac{1}{2}\right)$ at time t = 0, how far is the particle from the origin at time t = 1?

7) Calculator active. The position of a particle at time $t \ge 0$ is given by $x(t) = \frac{\sqrt{t+1}}{3}$ and $y(t) = t^2 + 1$. Find the total distance traveled by the particle from t = 0 to t = 2.

8) Calculator active. The velocity vector a particle moving in the xy-plane has components given by $\frac{dx}{dt} = \sin 2t$ and $\frac{dy}{dt} = e^{\cos t}$. At time t = 2, the position of the particle is (3, 2). What is the x-coordinate of the position vector at time t = 3?

9) A particle moves along the polar curve $r = 4 - 2\cos\theta$ so that $\frac{d\theta}{dt} = 4$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$.

10) Calculator active. For a certain polar curve $r = f(\theta)$, it is known that $\frac{dx}{d\theta} = 3\cos\theta - 3\theta\sin\theta$ and $\frac{dy}{d\theta} = 3(\sin\theta + \theta\cos\theta)$. What is the value of $\frac{d^2y}{dx^2}$ at $\theta = 3$?

11) The graph to the right shows the polar curve $r = 2 + \cos \theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded by the curve and the x-axis?

12) Find the area of the shaded region for the polar curve $r = 1 - \cos \theta$.

13) Find the total area enclosed by the polar curve $r = 2 + 2\cos 2\theta$ shown in the figure

14) Write do not solve, an integral expression that represents the area enclosed by the smaller loop of the polar curve $r = 1 - 2 \sin \theta$.

15) Find the limits of integration required to find the area of one petal of the polar graph $r = 4 \sin 3\theta$ in the second quadrant.

16) What is the total area between the polar curves $r = 2 \sin 3\theta$ and $r = 5 \sin 3\theta$.

The figure to the right shows the graphs of the polar curves $r=2\cos^2\theta$ and $r=4\cos^2\theta$ for $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$. Which of the following integrals gives the area of the region bounded between the two polar curves?

- A. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$ B. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos^4 \theta \, d\theta$ C. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^4 \theta \, d\theta$ D. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^2 \theta \, d\theta$
- 18) Find the total area in the first quadrant of the common interior of $r = 4 \sin 2\theta$ and r = 2.

19) Find the area of the common interior of the polar graphs $r = 3\cos\theta$ and $r = 3\sin\theta$.

20)

Let S be the region in the 1st Quadrant bounded above by the graph of the polar curve $r = \cos \theta$ and bounded below by the graph of the polar curve $r = \frac{7}{2}\theta$, as shown in the figure. The two curves intersect when $\theta = 0.275$. What is the area of S?

