BC Calculus Units 6-8 Quiz Review WS 3

Evaluate the below: Show all work!

1)

The function f has a continuous derivative. The table gives the values of f and its derivatives for x = 1 and x = 6. If $\int_1^6 f(x) dx = 9$, what is the value of $\int_1^6 3x f'(x) dx$?

x	f(x)	f'(x)
1	2	4
6	8	-3

2)
$$\int 4xe^{3x+2}dx$$

3)
$$\int \frac{2}{(x-1)(x+2)(x-4)} dx$$

4)
$$\int_2^\infty x^{-3} dx$$

5)
$$\int_0^3 \frac{1}{\sqrt{9-x^2}} dx$$

6)

Let $h(x) = \int_1^x \frac{1}{t^2} dt$. Use Euler's method, starting at x = 1 with two steps of equal size, to approximate h(3).

The table below gives the values of f', the derivative of f. If f(2) = 1, what is the approximation to f(2.3) obtained by using Euler's method with 3 steps of equal size?

x	2	2.1	2.2	2.3
f'(x)	-0.1	-0.15	-0.3	-0.5

8)

A populations rate of growth is modeled by the logistic differential equation $\frac{dP}{dt} = \frac{1}{400}P(100 - P)$, where t is in days and P(0) = 10. What is the greatest rate of change for this population?

9)

Using the logistic differential equation $\frac{dP}{dt} = \frac{1}{3}P - \frac{1}{120}P^2$, what is $\lim_{t \to \infty} P(t)$?

10)

A rate of change $\frac{dP}{dt}$ of a population is modeled by a logistic differential equation. If $\lim_{t\to\infty} P(t) = 100$ and the rate of change of the population is 5 when the population size is 20, which of the following differential equations describe the situation?

A.
$$\frac{dP}{dt} = 5P\left(1 - \frac{P}{20}\right)$$

B.
$$\frac{dP}{dt} = 20P \left(1 - \frac{P}{100}\right)$$

C.
$$\frac{dP}{dt} = \frac{5}{16} P \left(1 - \frac{P}{100} \right)$$

D.
$$\frac{dP}{dt} = \frac{16}{5} P \left(1 - \frac{P}{100} \right)$$

11)

A rate of change for a population is modeled by the differential equation $\frac{dP}{dt} = 0.3P(66 - P)$. What is the population when the rate of change is the greatest?

12) No Calculator. Suppose $F(x) = \int_0^x \sqrt{3 - 4\cos^2 t} \ dt$. What is the length of the arc along the curve y = F(x) for $0 \le x \le \frac{\pi}{3}$?

Let R be the region bounded by the graphs of $f(x) = x^2 + 1$ and $g(x) = -x^2 + 5$. Write an expression including one or more integrals that gives the length of the region R. **Do Not Evaluate.**

$$\lim_{x\to\infty}(x+1)^{e^{-x}}$$

$$\lim_{x \to \pi/2^-} (\sin x)^{\tan x}$$