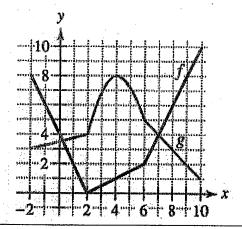

Ch. 2.3 **Product, Quotient Rule** HW Problems


Evaluating Derivatives using graphs

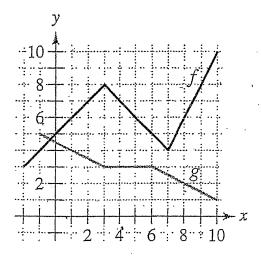
Evaluating Derivatives In Exercises 81 and 82, use the graphs of f and g. Let p(x) = f(x)g(x) and q(x) = f(x)/g(x).

- **81.** (a) Find p'(1).
 - (b) Find q'(4).

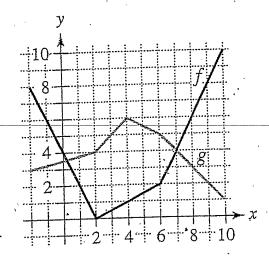
- 82. (a) Find p'(4).
 - (b) Find q'(7).

Using Relationships In Exercises 103–106, use the given information to find f'(2).

$$g(2) = 3$$
 and $g'(2) = -2$


$$h(2) = -1$$
 and $h'(2) = 4$

103.
$$f(x) = 2g(x) + h(x)$$


105.
$$f(x) = \frac{g(x)}{h(x)}$$

In Exercises 99 and 100, the graphs of f and g are shown. Let h(x) = f(g(x)) and s(x) = g(f(x)). Find each derivative, if it exists. If the derivative does not exist, explain why.

- **99.** (a) Find h'(1).
 - (b) Find s'(5).

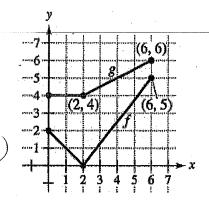
- **100.** (a) Find h'(3).
 - (b) Find s'(9).

Ch. 2.4 Chain Rule HW Problems #102, #115

102. Using Relationships Given that g(5) = -3, g'(5) = 6, h(5) = 3, and h'(5) = -2, find f'(5) for each of the following, if possible. If it is not possible, state what additional information is required.

Recall: Product Rule: $\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$ Quotient Rule: $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

Chain Rule: $\frac{d}{dx}f[g(x)] = f'[g(x)] * g'(x)$


(a)
$$f(x) = g(x)h(x)$$

(b)
$$f(x) = g(h(x))$$

(c)
$$f(x) = \frac{g(x)}{h(x)}$$

(d)
$$f(x) = [g(x)]^3$$

115. Think About It Let r(x) = f(g(x)) and s(x) = g(f(x)), where f and g are shown in the figure. Find (a) r'(1) and (b) s'(4).

Ch.2.5 Implicit Differentiation Vertical, Horizontal Tangent Lines HW Problems #57, #58

Vertical and Horizontal Tangent Lines In Exercises 57 and 58, find the points at which the graph of the equation has a vertical or horizontal tangent line.

*Find Horizontal Tangent lines by setting numerator of derivative equal to zero, solve for x

*Find Vertical Tangent lines by setting denominator of derivative equal to zero, solve for x

57.
$$25x^2 + 16y^2 + 200x - 160y + 400 = 0$$

58.
$$4x^2 + y^2 - 8x + 4y + 4 = 0$$

1000

CALCULUS AB SECTION II, Part B Time—45 minutes Number of problems—3

No calculator is allowed for these problems.

5. Consider the curve given by $xy^2 - x^3y = 6$.

(a) Show that
$$\frac{dy}{dx} = \frac{3x^2y - y^2}{2xy - x^3}$$
.

- (b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
- (c) Find the x-coordinate of each point on the curve where the tangent line is vertical.