## Ch. 4 Test Review WS \#4 Riemann Sums Practice Worksheet

(Determining Units of Measure and interpreting Definite Integrals!)
*Important Key Point*: When applying(or approximating) a Calculus process(derivatives or integrals), your units of measure will change!
1)

| t (minutes) | 0 | 1 | 3 | 6 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{c}(\mathrm{t})$ (ounces <br> per minute) | 0 | 5.1 | 4.2 | 3.3 | 1.2 | 2.3 |

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The rate that water in the cup at time $t$ is changing, $0 \leq t \leq 10$, is given by a differential function $c(t)$, where $t$ is measured in minutes. Select values if $\mathrm{c}(\mathrm{t})$, measured in ounces per minute are given in the table above.
a) Interpret the meaning of $c^{\prime}(6)$ and indicate the units of measure.
b) Approximate the value of $c^{\prime}(6)$ and indicate the units of measure.
c) Intepret the meaning of $\int_{1}^{10} c(t) d t$ and indicate the units of measure.
d) Approximate the value of $\int_{1}^{10} c(t) d t$ using 2 middle rectangles and indicate the units of measure.
e) Approximate the average rate of water being added on time interval [ $[1,10$ ] using result from part d)
2)

| $t$ <br> (minutes) | 0 | 12 | 20 | 24 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)$ <br> (meters per minute) | 0 | 200 | 240 | -220 | 150 |

Johanna jogs along a straight path. For $0 \leq t \leq 40$, Johanna's velocity is given by a differentiable function $v$.
Selected values of $v(t)$, where $t$ is measured in minutes and $v(t)$ is measured in meters per minute, are given in the table above.
a) Interpret the meaning of $\boldsymbol{v}^{\prime}(\mathbf{2 0})$ and indicate the units of measure.
b) Approximate the value of $v^{\prime}(18)$ and indicate the units of measure.
c) Intepret the meaning of $\int_{20}^{40} v(t) d t$ and indicate the units of measure.
d) Approximate the value of $\int_{20}^{40} v(t) d t$ using 2 trapezoids and indicate the units of measure.
e) Approximate Johanna's average velocity on [20, 40] using the results from part d)

