7.1-7.2 Area & Volume Formula Sheet

$$Area = \int_{x_1}^{x_2} (Top \ graph - Bottom \ graph) dx \qquad Area = \int_{y_1}^{y_2} (Right \ graph - Left \ graph) dy$$
(in the forms of "y = ")
(in the form of "x = ")

$$Area = \int_{y_1}^{y_2} (Right \ graph - Left \ graph) dy$$
(in the form of "x = ___")

Disc Method: (Top - Bottom) - Vertical Radius -**Horizontal AOR**

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx$$

(expression(s) used above has form: "y = ")

Disc Method: (Right - Left) - Horizontal Radius **Vertical AOR**

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$$

(expression(s) used above has form: "x = ____")

Washer Method: (Top – Bottom), Vertical Radius (Horizontal AOR)

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

(expression(s) used above has form: "y = ____")

Washer Method: (Right - Left), Horizontal Radius (Vertical AOR)

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 - [r(y)]^2 dy$$

(expression(s) used above has form: "x = ____")

Top-Bottom Vertical base

$$V = \int_{x_1}^{x_2} [Area \text{ of cross section}] dx$$

*Note: All values in integral are in terms of x (in the form of " $y = ___$ ")

Right-Left Horizontal base

$$V = \int_{y_1}^{y_2} [Area \text{ of cross section}] dy$$

*Note: All values in integral are in terms of y (in the forms of "x =____")

Area formulas for Cross sections:

1. Square:
$$A = (base)^2$$
 2. Isosceles Right Triangle (leg on base): $A = \frac{1}{2}(base)^2$ 3. Isosceles Right Triangle (hypotenuse on base): $A = \frac{1}{4}(base)^2$ 4. Rectangle: $A = (base)(height)$ 5. Equilateral Triangle: $A = \frac{\sqrt{3}}{4}(base)^2$ 6. Semicircle: $A = \frac{\pi}{8}(base)^2$