Calculus Ch. 7.2b: Volume by Washer Method

With Disc Method, we rotated one function around the x-axis. We used the Integral Notation to add areas of circular discs to find the volume of 3-dimensional curved objects.

Now, what if we wanted to find the volume created between $\underline{2}$ functions?
Take a look at the region between $y=x^{2}$ and $y=\sqrt{x}$. Picture taking that region and rotate that shape 360° around the x-axis. What shape do you see? What's different between this object and the object created by Disc Method? \qquad

Each slice has the shape of a washer (circular rings) so its area equals the area of the
entire circle minus the area of the hole. Area of circular washer (ring)= \qquad

Volume (Washer Method): $V=$

Volume (Washer Method): $V=\pi \int_{a}^{b}\left[R(x)^{2}-r(x)^{2}\right] d x$

Washer Method Steps:

1)Confirm gap exists between x-axis and the shaded region (gap indicates hole \rightarrow suitable for washer method)
2) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
3) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to further boundary of shaded region $[\boldsymbol{R}(\boldsymbol{x})=\boldsymbol{T o p}-$ Bottom $]$
4) Draw the length of radius $\mathbf{r}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to closer boundary of shaded region $[\boldsymbol{r}(\boldsymbol{x})=\boldsymbol{t o p}-$ bottom $]$
5) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
6) Enter expressions for $R(x)$ and $r(x)$ into Washer Method Volume formula
7) Enter Integral into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)

Example 1: Find the volume of the solid bounded by $y=x^{2}$ and $y=\sqrt{x}$ revolved about the x-axis.

Example 2: Find the volume of the solid bounded by $y=x^{2}+1$ and $y=2$ revolved about the x-axis.

$\underline{\text { Washer Method Steps: }} V=\pi \int_{a}^{b}\left[R(x)^{2}-r(x)^{2}\right] d x$
1)Confirm gap exists between x-axis and the shaded region (gap indicates hole \rightarrow suitable for washer method)
2) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
3) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to further boundary of shaded region [R(x) = Top - Bottom]
4) Draw the length of radius $\mathbf{r}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to closer boundary of shaded region
[r $r(x)=$ top - bottom $]$
5) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
6) Enter expressions for $R(x)$ and $r(x)$ into Washer Method Volume formula
7) Enter Integral into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)

Example 3: Find the volume of the solid bounded by $y=x^{2}$ and $y=\sqrt{x}$ revolved about the line $\mathrm{y}=1$

Example 4: Find the volume of the solid bounded by $y=x^{2}+1$ and $y=2$ revolved about line $y=4$

$\underline{\text { Washer Method Steps: }} V=\pi \int_{a}^{b}\left[R(x)^{2}-r(x)^{2}\right] d x$
1)Confirm gap exists between x-axis and the shaded region (gap indicates hole \rightarrow suitable for washer method)
2) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
3) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to further boundary of shaded region [$R(x)=$ Top - Bottom $]$
4) Draw the length of radius $\mathbf{r}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to closer boundary of shaded region [r r ($)=$ top - bottom]
5) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
6) Enter expressions for $R(x)$ and $r(x)$ into Washer Method Volume formula
7) Enter Integral into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)
5. Find the volume of the solid bounded by $x=1, y=-1, y$-axis, and the graph $y=x^{2}$ rotated about the line $y=-3$

6. Find the volume of the solid bounded by equations $y=x^{2}-x$ and $y=6$ rotated about the line $y=8$

