AB Calculus - Chapter P (Day 1) - Functions, Function Properties, and their Graphs

Evaluating a Function:

Given $f(x)=x^{2}-2 x+5$, find the following.

1. $f(-2)=$
2. $f(x+2)=$
3. $f(x+h)=$

Use the graph $f(x)$ to answer the following.

4. $f(0)=$
$f(4)=$
$f(-1)=$
$f(-2)=$
$f(2)=$
$f(3)=$
$f(x)=2$ when $x=$?
$f(x)=-3$ when $x=?$

Write the equation of the line meets the following conditions. Use point-slope form.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

5. slope $=3$ and $(4,-2)$
6. $m=-\frac{3}{2}$ and $f(-5)=7$
7. $f(4)=-8$ and $f(-3)=12$

Write the equation of the tangent line in point slope form. $y-y_{1}=m\left(x-x_{1}\right)$
8. The line tangent to $f(x)$ at $x=1$

9. The line tangent to $f(x)$ at $x=-2$

MULTIPLE CHOICE! Remember slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

10. Which choice represents the slope of the secant line shown?
A) $\frac{7-2}{f(7)-f(2)}$
B) $\frac{f(7)-2}{7-f(2)}$
C) $\frac{7-f(2)}{f(7)-2}$
D) $\frac{f(7)-f(2)}{7-2}$
11. Which choice represents the slope of the secant line shown?
A) $\frac{f(x)-f(x+2)}{x+2-x}$
B) $\frac{f(x+2)-f(x)}{x+2-x}$
C) $\frac{f(x+2)-f(x)}{x-(x+2)}$
D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant
line
I. To Find Vertical Asymptotes: Set Denominator Factors equal to zero and solve for x . (Make sure factors do not cancel with numerator)
II. To Find Holes in graph: Identify factors that cancels out between numerator and denominator. Set factor equal to zero and solve for x. To find the point (ordered pair), find y-value using the original function graph.
III. To Find Horizontal Asymptote: Compare Degrees between Numerator (N) and Denominator (D)
a) If $\mathbf{N}=\mathbf{D}$, then horizontal asymptote is $\mathbf{y}=$ (ratio of leading coefficients)
b) If $\mathbf{N}<\mathbf{D}$, the horizontal asymptote is $\mathbf{y}=\mathbf{0}$
c) If $\mathbf{N}>\mathbf{D}$, there is no horizontal asymptote.
9. $f(x)=\frac{x+2}{3-x}$
10. $f(x)=\frac{4 x-4}{x^{2}-9}$

Holes:
Vertical Asymptotes: \qquad
Horizontal Asymptote: \qquad
x-intercept: \qquad
11. $f(x)=\frac{x^{2}-2 x}{x^{3}-5 x^{2}+6 x}$

Holes: \qquad
Vertical Asymptotes: \qquad
Horizontal Asymptote: \qquad
x-intercept: \qquad
12. $f(x)=\frac{5 x^{2}+2}{3 x^{2}-12}$

Holes:

Vertical Asymptotes:

\qquad
Horizontal Asymptote: \qquad
x-intercept: \qquad

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):
16.

Domain:

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):

MULTIPLE CHOICE!

17. Which of the following functions has a vertical asymptote at $x=4$?
(A) $\frac{x+5}{x^{2}-4}$
(B) $\frac{x^{2}-16}{x-4}$
(C) $\frac{4 x}{x+1}$
(D) $\frac{x+6}{x^{2}-7 x+12}$
(E) None of the above
18. Consider the function: $(x)=\frac{x^{2}-5 x+6}{x^{2}-4}$. Which of the following statements is true?
I. $f(x)$ has a vertical asymptote of $x=2$
II. $f(x)$ has a vertical asymptote of $x=-2$
III. $f(x)$ has a horizontal asymptote of $y=1$
(A) I only
(B) II only
(C) I and III only
(D) II and III only
(E) I, II and III
