AB Calculus – Chapter P (Day 1) – Functions, Function Properties, and their Graphs

Evaluating a Function:

Given $f(x) = x^2 - 2x + 5$, find the following.

1.
$$f(-2) =$$

2.
$$f(x + 2) =$$

3.
$$f(x+h) =$$

Use the graph f(x) to answer the following.

4.
$$f(0) =$$

$$f(4) =$$

$$f(-1) =$$

$$f(-2) =$$

$$f(2) =$$

$$f(3) =$$

$$f(x) = 2$$
 when $x = ?$

$$f(x) = -3$$
 when $x = ?$

Write the equation of the line meets the following conditions. Use point-slope form.

 $y - y_1 = m(x - x_1)$

5. slope =
$$3$$
 and $(4, -2)$

6.
$$m = -\frac{3}{2}$$
 and $f(-5) = 7$

7.
$$f(4) = -8$$
 and $f(-3) = 12$

Write the equation of the tangent line in point slope form. $y - y_1 = m(x - x_1)$

8. The line tangent to f(x) at x = 1

9. The line tangent to f(x) at x = -2

MULTIPLE CHOICE! Remember slope = $\frac{y_2 - y_1}{x_2 - x_1}$

- 10. Which choice represents the slope of the secant line shown?
- A) $\frac{7-2}{f(7)-f(2)}$ B) $\frac{f(7)-2}{7-f(2)}$ C) $\frac{7-f(2)}{f(7)-2}$ D) $\frac{f(7)-f(2)}{7-2}$

- 11. Which choice represents the slope of the secant line shown?
- A) $\frac{f(x)-f(x+2)}{x+2-x}$ B) $\frac{f(x+2)-f(x)}{x+2-x}$ C) $\frac{f(x+2)-f(x)}{x-(x+2)}$

D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line

Find all Vertical Asymptotes, Horizontal Asymptotes, Holes, and x-intercepts (for Rational Functions)

- **I.** <u>To Find Vertical Asymptotes:</u> Set Denominator Factors equal to zero and solve for x. (Make sure factors do not cancel with numerator)
- II. <u>To Find Holes in graph:</u> Identify factors that cancels out between numerator and denominator. Set factor equal to zero and solve for x. To find the point (ordered pair), find y-value using the original function graph.
- III. <u>To Find Horizontal Asymptote:</u> Compare Degrees between Numerator (N) and Denominator (D)
 - a) If N = D, then horizontal asymptote is y = (ratio of leading coefficients)
 - b) If N < D, the horizontal asymptote is y = 0
 - c) If N > D, there is no horizontal asymptote.

$$9. f(x) = \frac{x+2}{3-x}$$

10.
$$f(x) = \frac{4x-4}{x^2-9}$$

Holes:	Holes:
Vertical Asymptotes:	Vertical Asymptotes:
Horizontal Asymptote:	Horizontal Asymptote:
x-intercept:	x-intercept:

11. $f(x) = \frac{x^2 - 2x}{x^3 - 5x^2 + 6x}$ 12. $f(x) = \frac{5x^2 + 2}{3x^2 - 12}$

Holes: ______ Holes: ______ Vertical Asymptotes: _____ Horizontal Asymptote: _____ Horizontal Asymptote: ______

x-intercept: _____ x-intercept: _____

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

14.

15.

16.

Domain:

Domain:

Domain:

Range:

Range:

Range:

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

MULTIPLE CHOICE!

17. Which of the following functions has a vertical asymptote at x = 4?

(A)
$$\frac{x+5}{x^2-4}$$

(B)
$$\frac{x^2-16}{x-4}$$

(C)
$$\frac{4x}{x+1}$$

(D)
$$\frac{x+6}{x^2-7x+12}$$

(E) None of the above

18. Consider the function: $(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$. Which of the following statements is true?

- I. f(x) has a vertical asymptote of x = 2
- II. f(x) has a vertical asymptote of x = -2

III. f(x) has a horizontal asymptote of y = 1

- (A) I only
- (B) II only
- (C) I and III only
- (D) II and III only
- (E) I, II and III