Recall finding area under the curve $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$ between $\left[\mathbf{0 , 4]}\right.$. Area $=\int_{a}^{b}($ Top graph - bottom graph $) d x$

*Essentially, the Integral Notation allows us to add infinite numbers of differently sized rectangles to form area calculation.

With Disc Method, we are going to take this region created by $f(x)$ and the x-axis and rotate this function 360° around the x-axis. What shapes do you see if we were to separate the resulting object into thin slices?

Disc Method: (Top - Bottom) - Vertical Radius

$$
V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2} d x
$$

(expression(s) used above has form: " $y=$ \qquad ")

Disc Method: (Right - Left) - Horizontal Radius

$$
V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2} d y
$$

(expression(s) used above has form: " $x=$ \qquad ")

Radius [$\mathrm{R}(\mathrm{x})$ or $\mathrm{R}(\mathrm{y})$] - distance from the AOR (Axis of Revolution) to the boundary of shaded region
Example 1: Find the volume of the solid formed by rotating the curve $y=\sqrt{x}$ around the x -axis between $[0,4]$

Disc Method: (Top - Bottom) - Vertical Radius Horizontal AOR

$$
V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2} d x
$$

(expression(s) used above has form: " $\mathrm{y}=\ldots$ ")

Disc Method: (Right - Left) - Horizontal Radius Vertical AOR

$$
V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2} d y
$$

(expression(s) used above has form: " $x=$ \qquad ")

Radius [$\mathrm{R}(\mathrm{x})$ or $\mathrm{R}(\mathrm{y})$] : distance from the AOR(Axis of Revolution) to the outer boundary of shaded region Example 2: Find the volume of the solid created by $f(x)=2-x^{2}$ revolved about the line $\mathrm{y}=1$.

Example 3: Given the region is formed by the function, x-axis, and y-axis. Find the volume of the solid formed by revolving the region about the \mathbf{y}-axis
a) $y=-x+1$

b) $y=4-x^{2}$

