Calculus Ch. 7.2a: Volume by Disc Method

Recall finding area under the curve $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$ between $\left[\mathbf{0 , 4]}\right.$. Area $=\int_{a}^{b}($ Top graph - bottom graph $) d x$

*Essentially, the Integral Notation allows us to add infinite numbers of differently sized rectangles to form area calculation.

With Disc Method, we are going to take this region created by $f(x)$ and the x-axis and rotate this function 360° around the x-axis. What shapes do you see if we were to separate the resulting object into thin slices? \qquad

Area of Circle is \qquad

Volume (Disc Method): $V=$
\qquad

Volume (Disc Method): $V=\pi \int_{a}^{b}\left[R(x)^{2}\right] d x$

Disc Method Steps:

a) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
b) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to outer boundary of shaded region: $[\boldsymbol{R}(\boldsymbol{x})=\boldsymbol{T o p}-\boldsymbol{B o t t o m}]$
c) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
d) Enter expressions for $R(x)$ and bounds into Disc Method Integral Notation.
e) Enter into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)

Example 1: Find the volume of the solid formed by rotating the curve $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$ around the x -axis between $[0,4]$

2) Find the volume of the solid bounded by the x-axis, y-axis, and the curve $y=4-x^{2}$ rotated about the x axis

Volume (Disc Method): $V=\pi \int_{a}^{b}\left[R(x)^{2}\right] d x$

Disc Method Steps:

a) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
b) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to outer boundary of shaded region $[\boldsymbol{R}(\boldsymbol{x})=\boldsymbol{T o p}-$ Bottom $]$
c) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
d) Enter expressions for $R(x)$ and bounds into Disc Method Integral Notation.
e) Enter into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)
3) Find the volume of the solid bounded by the $y=1, y$-axis, and the graph $y=x^{2}$ rotated about the line $y=1$

4) Find the volume of the solid bounded by the $y=0, x=1$, and the graph $y=x^{2}$ rotated about the x-axis

Disc Method Steps: Volume (Disc Method): $V=\pi \int_{a}^{b}\left[R(x)^{2}\right] d x$
a) Draw dotted line across the x-axis to indicate location of Axis of Revolution (AOR)
b) Draw the length of Radius $\mathbf{R}(\mathbf{x})$: Place pen/pencil first on the dotted line (AOR) and extend to outer boundary of shaded region $[R(x)=$ Top - Bottom $]$
c) Identify the left and right bounds (a and b). If needed, set the equations equal to find bounds.
d) Enter expressions for $\mathrm{R}(\mathrm{x})$ and bounds into Disc Method Integral Notation.
e) Enter into calculator to find Volume. (TI-84: Math $9 \rightarrow$ FnInt or TI-36X Pro: $2^{\text {nd }} \rightarrow$ e)
5) Find the volume of the solid bounded by $x=1, y=-1, y$-axis, and the graph $y=x^{2}$ rotated about the line $y=-1$

6) Find the volume of the solid bounded by equations $y=x^{2}-x$ and $y=6$ rotated about the line $y=6$

