Ch. 10 Circles Concept Review

$$m \angle AOB = m\widehat{AB}$$

$$m\angle ABC = \frac{1}{2}\widehat{mAC}$$

Intersecting Chords inside circle:

$$m \angle BED = \frac{1}{2}(m\widehat{BD} + m\widehat{AC})$$

Angle outside circle formed by secants/tangents:

$$m \angle ACE = \frac{1}{2}(m\widehat{AE} - m\widehat{BD})$$

Angle outside circle formed by secants/tangents:

$$m \angle ABC = \frac{1}{2}(m\widehat{AFC} - m\widehat{AC})$$

Angle outside circle formed by secants/tangents:

$$m \angle ABD = \frac{1}{2}(m\widehat{AD} - m\widehat{AC})$$

Inscribed Quadrilateral Property:

A + C = 180B + D = 180

Congruent chords in circle:

$$\overrightarrow{LM} \cong \overrightarrow{XY} \text{ and } \widehat{LM} \cong \widehat{XY}$$

Inscribed Angles intercepting same arc:

Inscribed Angle Intercepting diameter:

Line tangent to circle is perpendicular to radius:

<u>Tangents to circles are congruent: (party hat problems):</u>

Chord segment lengths: part * part = part * part

Secant segment lengths:
outside * whole = outside * whole

<u>Secant/tangent segment lengths:</u> outside * whole = outside * whole

Ch. 10 Circles Concept Review

 $m \angle AOB = m\widehat{AB}$

$$x = 80^{\circ}$$

Intersecting Chords inside circle:

$$m \angle BED = \frac{1}{2}(m\widehat{BD} + m\widehat{AC})$$

$$x = \frac{1}{2} (70 + 170)$$

$$x = \frac{1}{2} (240)$$

$$x = 120^{0}$$

Angle outside circle formed by secants/tangents:

$$m \angle ABC = \frac{1}{2}(m\widehat{AFC} - m\widehat{AC})$$

Inscribed Quadrilateral Property:

B + D = 180

$$\angle A + \angle C = 180^{\circ}$$

 $\angle A + 120 = 180$
 $\angle A = 60^{\circ}$
 $\boxed{X = 60^{\circ}}$

Inscribed Angles:

 $m \angle ABC = \frac{1}{2}\widehat{mAC}$

$$m\angle ACE = \frac{1}{2}(m\widehat{AE} - m\widehat{BD}) \qquad \chi = \frac{1}{2}(80 - 20)$$

Angle outside circle formed by secants/tangents:

 $m \angle ABD = \frac{1}{2} (m\widehat{AD} - m\widehat{AC})$ $X = \frac{1}{2}(100 - 30)$

Congruent chords in circle:

 $LM \cong XY$ and $\widehat{LM} \cong \widehat{XY}$

Inscribed Angles intercepting same arc:

Inscribed Angle Intercepting diameter:

Line tangent to circle is perpendicular to radius:

$$5^2 + x^2 = 13^2$$

$$x^2 = 13^2 - 5^2$$

$$x^2 = 144$$
 [X=12]

Chord segment lengths: part * part = part * part

$$3x = 6(4)$$

Secant segment lengths: outside * whole = outside * whole

$$4(x+4)=6(16+6)$$
 $\times \cdot \times = 4(4+8)$

$$4x+16 = 6(16)$$

$$4x = 80$$

Tangents to circles are congruent: (party hat problems):

$$7x-3=5x+1$$

$$2x = 4$$

$$x = 2$$

Secant/tangent segment lengths: outside * whole = outside * whole

$$\times \cdot \times = 4(4+8)$$

$$X^{2} = 4(12)$$

$$x^{2} = 48$$

$$x = 20$$
 $x = \sqrt{48} = 4\sqrt{3} \approx 6.928$