Theorems (IVT, EVT, and MVT)

Students should be able to apply and have a geometric understanding of the following:

- Intermediate Value Theorem
- Mean Value Theorem for derivatives
- Extreme Value Theorem

Multiple Choice

1. (calculator not allowed)

If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be false?

- (A) $f'(c) = \frac{f(b) f(a)}{b a}$ for some c such that a < c < b.
- (B) f'(c) = 0 for some c such that a < c < b.
- (C) f has a minimum value on $a \le x \le b$.
- (D) f has a maximum value on $a \le x \le b$.
- (E) $\int_a^b f(x) dx$ exists.
- 2. (calculator not allowed)

The function f is defined on the closed interval [2,4] and f(2)=f(3)=f(4). On the open interval (2,4), f is continuous and strictly decreasing. Which of the following statements is true?

- (A) f attains neither a minimum value nor a maximum value on the closed interval [2,4].
- (B) f attains a minimum value but does not attain a maximum value on the closed interval [2,4].
- (C) f attains a maximum value but does not attain a minimum value on the closed interval [2, 4].
- (D) f attains both a minimum value and a maximum value on the closed interval [2, 4].

(calculator not allowed)

Let f be a function with first derivative defined by $f'(x) = \frac{2x^2 - 5}{x^2}$ for x > 0. It is known that f(1)=7 and f(5)=11. What value of x in the open interval (1,5) satisfies the conclusion of the Mean Value Theorem for f on the closed interval [1,5]?

(A) 1

- (B) $\sqrt{\frac{5}{2}}$
- (C) ³√10

(D) √5

(calculator not allowed)

	X	0	1	2	
Γ	f(x)	1	k	2	

The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0, 2] if k =

- (A) 0
- (B) $\frac{1}{2}$ (C) 1 (D) 2
- (E)

(calculator not allowed)

Let g be a continuous function on the closed interval [0, 1]. Let g(0) = 1 and g(1) = 0. Which of the following is NOT necessarily true?

- (A) There exists a number h in [0, 1] such that $g(h) \ge g(x)$ for all x in [0, 1].
- (B) For all a and b in [0, 1], if a = b, then g(a) = g(b).
- There exists a number h in [0, 1] such that $g(h) = \frac{1}{2}$.
- (D) There exists a number h in [0, 1] such that $g(h) = \frac{3}{2}$.
- (E) For all h in the open interval (0, 1), $\lim_{x \to h} g(x) = g(h)$.

(calculator not allowed)

If $f(x) = \sin\left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c?

- (D) $\frac{3\pi}{2}$ (E) $\frac{3\pi}{2}$

(calculator not allowed)

Which of the following theorems may be applied to the graph below, y = |x-3| + b, b > 0, over the interval [2, 4]?

- Mean Value Theorem I.
- II. Intermediate Value Theorem
- III. Extreme Value Theorem
- (A) I only (B) II only
- (C) III only
- (D) II and III only (E) I, II, and III

8. (calculator not allowed)

The function f is defined by $f(x) = 4x^2 - 5x + 1$. The application of the Mean Value Theorem to f on the interval 0 < x < 2 guarantees the existence of a value c, where 0 < c < 2 such that f'(c) =

(A) 1

(B) 3

- (C) 7
- (D) 8

9. (calculator not allowed)

A function of f is continuous on the closed interval [2,5] with f(2)=17 and f(5)=17. Which of the following additional conditions guarantees that there is a number c in the open interval (2,5) such that f'(c)=0?

- (A) No additional conditions are necessary
- (B) f has a relative extremum on the open interval (2,5).
- (C) f is differentiable on the open interval (2,5).
- (D) $\int_{2}^{5} f(x)dx$ exists

10. (calculator not allowed)

X	0	2	4	8
f(x)	3	4	9	13
f'(x)	0	1	1	2

The table above gives values of a differentiable function f and its derivatives at selected values of x . If h is the function given by h(x) = f(2x), which of the following statements must be true?

- (I) h is increasing on 2 < x < 4.
- (II) There exists c, where 0 < c < 4, such that h(c) = 12.
- (III) There exists c, where 0 < c < 2, such that h'(c) = 3.
- (A) II only
- (B) I and III only
- (C) II and III only
- (D) I, II, and III

11. (calculator allowed)

The function f is continuous for $-2 \le x \le 1$ and differentiable for -2 < x < 1. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?

- (A) There exists c, where -2 < c < 1, such that f(c) = 0.
- (B) There exists c, where -2 < c < 1, such that f'(c) = 0.
- (C) There exists c, where -2 < c < 1, such that f(c) = 3.
- (D) There exists c, where -2 < c < 1, such that f'(c) = 3.
- (E) There exists c, where $-2 \le c \le 1$ such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.

12. (calculator not allowed)

X	0	2	5	9	11
g(x)	1	2.8	1.7	1	3.4

The table above shows selcted values of a continuous function g. For $0 \le x \le 11$, what is the fewest possible number of times g(x) = 2?

- (A) One
- (B) Two
- (C) Three
- (D) Four

Free Response

13. (calculator not allowed)

t	0	1	2	3	4	5	6
(minutes)							
C(t)	0	5.3	8.8	11.2	12.8	13.8	14.5
(ounces)							

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, $0 \le t \le 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table above.

Is there a time t, $2 \le t \le 4$, at which C'(t) = 2? Justify your answer.

14. (calculator not allowed)

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters/minute)	0	100	40	-120	-150

Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured in meters per minute, is given by a differentiable function $v_A(t)$, where time t is measured in minutes. Selected values for $v_A(t)$ are given in the table above.

(b) Do the data in the table support the conclusion that train A's velocity is -100 meters per minute at some time t with 5 < t < 8? Give a reason for your answer.

15. (calculator allowed)

A continuous function f is defined on the closed interval $-4 \le x \le 6$. The graph of f consists of a line segment and a curve that is tangent to the x-axis at x=3, as shown in the figure above. On the interval 0 < x < 6, the function f is twice differentiable, with f''(x) > 0.

(c) Is there a value of a, $-4 \le a < 6$, for which the Mean Value Theorem, applied to the interval [a, 6], guarantees a value c, a < c < 6, at which $f'(c) = \frac{1}{3}$? Justify your answer.

16. (calculator not allowed)

Let g be a continuous function with g(2) = 5. The graph of the piecewise-linear function g', the derivative of g, is shown above for $-3 \le x \le 7$.

(d) Find the average rate of change of g'(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g''(c) is equal to this average rate of change? Why or why not?

18. (calculator not allowed)

Let f be a twice-differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).

(a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.

(b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0.

(d) Let h(x) = f(x) - x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.