
- 1. A t-shirt maker estimates that the weekly cost of making x shirts is $C(x) = 50 + 2x + \frac{x^2}{20}$ The weekly revenue from selling x shirts is given by the function $R(x) = 20x + \frac{x^2}{200}$
 - a) What is the profit if all the shirts made are sold? (Profit = Revenue Cost)

- b) What is the maximum weekly profit?
- 2. The second derivative of f(x) has zeros at x = a and x = c and a minimum at x = b as shown. The function f(x) is concave up

- (A) when 0x < a
- (B) when 0x < b
- (C) when x > b
- (D) when 0x < a and x > c
- (E) nowhere
- 3. Verify whether $f(x) = 3x^2 12x + 1$ satisfies Rolle's theorem on the interval [0, 4] and find all numbers c that satisfy f'(c) = 0
 - A) c = 0
 - B) c = 1
 - C) c = 2
 - D) c = 4
 - E) f(x) does not satisfy Rolle's theorem on interval [0, 4]
- 4. Which of the following statements is true of the function $f(x) = x^{2/3}$

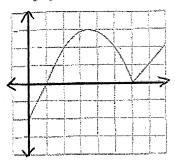
I. There is a critical point at (0, 0

II. f '(0) and f''(0) are undefined

III. The curve is concave up over the interval $(0, \infty)$

IV. The curve is concave down over interval $(-\infty, 0)$

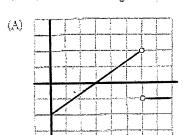
A. I and III only

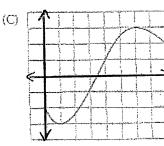

B. I, II, IV only

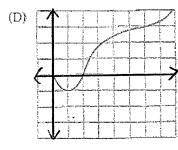
C. I, II, III

D. I, III, and IV

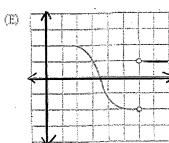
E. I, II, III, and IV


The graph of a function g(x) is given.

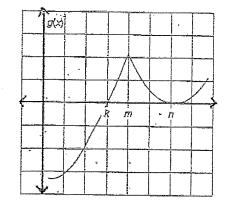

6. The height of an object t seconds after it is dropped from a height of 500 meters is $x(t) = -4.9t^2 + 500$

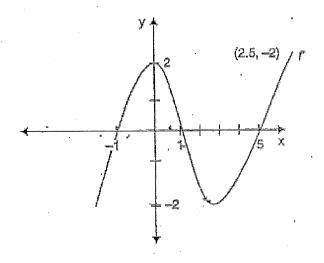

a) Find the avg velocity of the object during the first 4 seconds (Think avg slope)

Which of the following could be the graph of g'(x)?



(B)


Use the Mean Value Theorem to verify that, at some point during the first 4 seconds of the fall, the instantaneous velocity equals the avg velocity. Find that time and height.

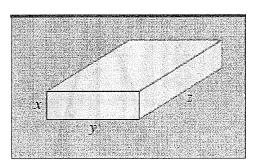

7. Max plans to build two side-by-side identical rectangular pens for his pigs that will enclose a total area of 216 ft². What is the minimum length of fencing he will need?

- 8. A manufacturer wants to design an open-top box having a square base and a surface area of 80 square inches.
 - a. What dimensions will provide a box with maximum volume?
 - b. Find maximum volume

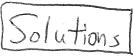
1. The graph of g(x) has zeros at x = k, x = n, and a relative maximum at m as shown. Based on the graph, which of the following is true?

- a) g'(x) has a relative maximum at x = k
- b) g'(x) has a zero at x = m
- c) g''(x) has a zero at x = n
- d) g'(x) is continuous everywhere
- e) g''(x) is never negative
- 2. Given the graph of f', find the following properties of the function f:

a) The intervals on which f is increasing or decreasing


b) The location of the relative maxima and minima

- c) The points of inflection and concavity of f
- d) Draw a sketch of f, given that f(-1) = -5f(1) = 5, f(0) = 0, and f(5) = -5


3. A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing \$30/foot and on the other 3 sides by a metal fence costing \$10/foot. If the area of the garden is 1000 square feet, find the dimensions of the garden that minimze cost. Round dimensions to 3 decimal places.

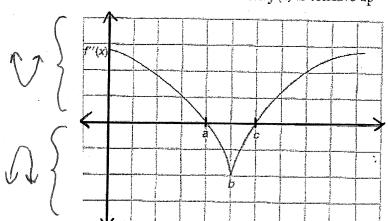
4.

A jewel box is to be constructed of material that costs \$1 per square inch for the bottom, \$2 per square inch for the sides, and \$5 per square inch for the top. If the total volume is to be 96 in.³ what dimensions will minimize the total cost of construction?

5. A 300-room hotel in Las Vegas is filled to capacity every night at \$80 a room. For each \$1 increase in rent, 3 fewer rooms are rented. If each rented room costs \$10 to service per day, how much should the management charge for each room to maximize gross profit? What is the maximum gross profit?

- A t-shirt maker estimates that the weekly cost of making x shirts is $C(x) = 50 + 2x + \frac{x^2}{20}$ The weekly revenue from selling x shirts is given by the function $R(x) = 20x + \frac{x^2}{200}$
 - a) What is the profit if all the shirts made are sold? (Profit = Revenue Cost)

$$P(x) = 20x + \frac{x^2}{200} - (50 + 2x + \frac{x^2}{20})$$


$$= 18x - 50 - \frac{9x^2}{200}$$

b) What is the maximum weekly profit?

$$P'(x) = 18 - 2(\frac{9}{200})x$$

 $0 = 18 - \frac{18}{200}x$

What is the maximum weekly profit? $P(x) = 18 - 2\left(\frac{9}{200}\right) \times \left[\begin{array}{c} 18 = 0.09 \times \\ \times = 200 \text{ shirts} \end{array}\right]$ $O = 18 - \frac{18}{200} \times \left[\begin{array}{c} 18 = 0.09 \times \\ \times = 200 \text{ shirts} \end{array}\right]$

The second derivative of f(x) has zeros at x = a and x = c and a minimum at x = b as shown. The function f(x) is concave up

- (A) when $\forall x < a$
- (B) when w < b
- C) when x > b
- when x < a and x > c
- 3. Verify whether $f(x) = 3x^2 12x + 1$ satisfies Rolle's theorem on the interval [0, 4] and find all numbers c that satisfy f'(c) = 0

A)
$$c=0$$
 $f(x)$ continuous on $[0,4]$ differentiable on $(0,4)$.

B) $c=1$ $f(0)=1$ $f(0)=f(4)=1$ *set $f'(x)=0$

E) $f(x)$ does not satisfy Rolle's theorem on interval $[0,4]$

E) f(x) does not satisfy Rolle's theorem on interval [0, 4]

6x-12=0

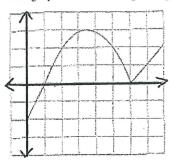
Which of the following statements is true of the function $f(x) = x^{2/3}$

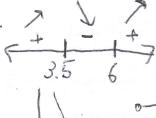
I. There is a critical point at
$$(0,0)$$
 True
II. $f'(0)$ and $f''(0)$ are undefined True
III. The curve is concave up over the interval $(0,\infty)$ False

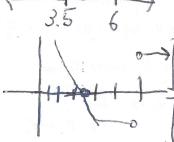
III. The curve is concave up over the interval (0, ∞) False IV. The curve is concave down over interval $(-\infty, 0)$

D. I, III, and IV

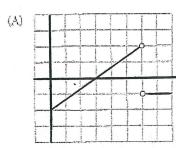
$$f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3x^{1/3}}$$

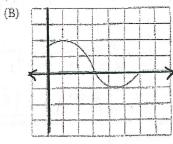

E. I, II, III, and IV
$$f''(x) = \frac{2}{3} \left(\frac{-1}{3} \right) X$$


$$= \frac{-2}{9x^{4/3}}$$

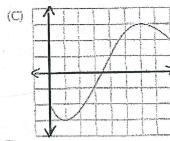

$$(1)$$

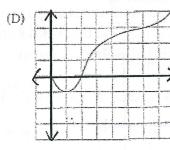
The graph of a function g(x) is given.



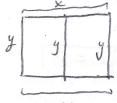


The height of an object t seconds after it is dropped from a height of 500 meters is $x(t) = -4.9t^2 + 500$


a) Find the avg velocity of the object during the first 4 seconds (Think avg slope)


Which of the following could be the graph of g'(x)?

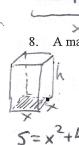
=-19.6m/s Use the Mean Value Theorem to



verify that, at some point during the first 4 seconds of the fall, the instantaneous velocity equals the avg velocity. Find that time and

*set
$$x(t) = Mavg$$
.
 $x'(t) = -9.8t$
 $-9.8t = -19.6$
 $t = 2seconds$
 $x(2) = 480.4ft$

7. Max plans to build two side-by-side identical rectangular pens for his pigs that will enclose a total area of 216 ft². What is the minimum length of fencing he will need?



$$P = 2x + 3y$$

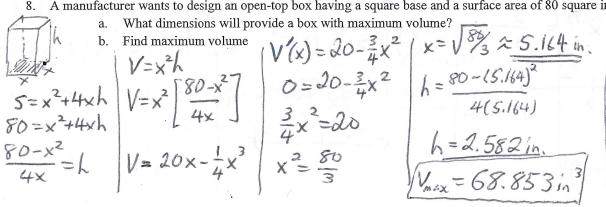
$$A = xy$$

$$216 = xy$$

A manufacturer wants to design an open-top box having a square base and a surface area of 80 square inches)

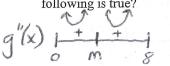
Find maximum volume
$$V = x^{2} \left[80 - x^{2} \right]$$

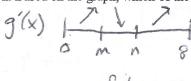
$$V = x^{2} \left[80 - x^{2} \right]$$


$$V = 20 \times -\frac{1}{4} x^{3}$$

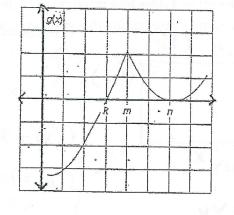
$$V'(x) = 20 - \frac{3}{4}x^{2}$$

$$0 = 20 - \frac{3}{4}x^{2}$$

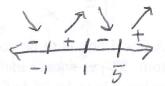

$$\frac{3}{4}x^{2} = 20$$

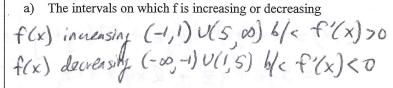

$$x^{2} = \frac{80}{3}$$

Solutions


The graph of g(x) has zeros at x = k, x = n, and a relative maximum at m as shown. Based on the graph, which of the

a) g'(x) has a relative maximum at x = k false

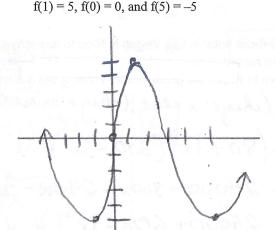

- b) g'(x) has a zero at x = m slope undefined, false
- c) g''(x) has a zero at x = n concave up, g"70, false
- d) g'(x) is continuous everywhere false, q (m) undefined

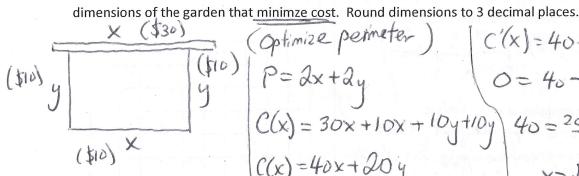


e) g''(x) is never negative

True, f" >0, except when f" undefined at x=m

Given the graph of f', find the following properties of the function f:




b) The location of the relative maxima and minima Rel. max at x=1 b/c f(x) changes from Rel. min at x=-1, x=5 6/e f(x) changes. from - to t.

c) The points of inflection and concavity of f

concave up (-00,0)U(3,00)b/cf"(x)70 Concave down (0,3)b/c f"(x)<0 POI at x=0,3 b/c f'(x) change

Draw a sketch of f, given that f(-1) = -5

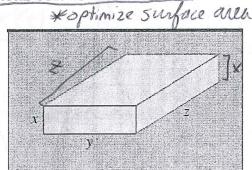
$$y$$
 $($10)$
 X
 $A = xy$
 $1000 = xy$
 $y = y$
 $y = y$

$$C(x) = 30x + 10x + 10y + 10y$$

 $C(x) = 40x + 20y$

3. A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing \$30/foot and on the other 3 sides by a metal fence costing \$10/foot. If the area of the garden is 1000 square feet, find the

$$C(x) = 40x + 20\left(\frac{1000}{x}\right)$$


$$C(x) = 40x + 200000x^{-1}$$

$$C'(x) = 40 - 20000x$$

$$0 = 40 - \frac{20000}{x^2}$$

A jewel box is to be constructed of material that costs \$1 per square inch for the bottom, \$2 per square inch for the sides, and \$5 per square inch for the top. If the total volume is to be 96 in.3 what dimensions will minimize the total cost of construction?

$$C(x) = $5(yz) + $1(yz) + $2(xy + xy + xz + xz)$$

= $5yz + yz + 4xy + 4xz$
 $C(x) = 6yz + 4xy + 4xz$ $V = xyz$

5. A 300-room hotel in Las Vegas is filled to capacity every night at \$80 a room. For each \$1 increase in rent, 3 fewer rooms are rented. If each rented room costs \$10 to service per day, how much should the management charge for each room to maximize gross profit? What is the maximum gross profit?

Rate = (change in rent)(change in rooms rented)
$$R(x) = (80 + 1x)(300 - 3x)$$

$$= 24000 + 300x - 240x - 3x^{2}$$

$$= 24000 + 60x - 3x^{2}$$

$$R'(x) = 60 - 6x$$

$$0=60-6x$$

$$6x=60$$

$$x=10 \text{ yeart}$$

$$= increases$$

Rent = 80+1x =80+1(10) Max protit