# **CCGPS Analytic Geometry**

#### Name:

# Properties of Exponents Notes – Dec. 1, 2014 (Monday)



1. Product of like bases:  $a^m a^n = a^{m+n}$ 

2. Quotient of like bases:  $\frac{a^m}{a^n} = a^{m-n}$ 

3. Power to a power:  $(a^m)^n = a^{mn}$ 

4. Product to a power:  $(ab)^m = a^m b^m$ 

5. Quotient to a power:  $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 

6. Zero exponent:  $a^0 = 1$ 

7. Negative exponent:  $a^{-n} = \frac{1}{a^n}$ 

or

$$\frac{1}{a^{-n}}=a^n$$

## **Properties of Exponents**



# <u>Practice Problems</u> – Simplify the expressions.

1. 
$$7^2 \cdot 7^3 = 7^5$$

2. 
$$(2^3)^4$$
  $2^{12}$ 

3. 
$$(m^3)^2$$
  $m^6$ 

4. 
$$(4r)^2 \cdot r$$
  
 $16r^2 \cdot r' = 16r^3$ 

5. 
$$(3x)^3(-5y)^2 = 27.25x^3y^2$$
  
 $(3^3 \times 3)(25y^2)$ 

6. 
$$x^{-4}$$
  $\frac{1}{x^{4}}$ 

3. Power to a power:  $(a^m)^n = a^{mn}$ 

4. Product to a power:  $(ab)^m = a^m b^m$ 

5. Quotient to a power:  $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 

6. Zero exponent:  $a^0 = 1$ 

7. Negative exponent:  $a^{-n} = \frac{1}{a^n}$  or  $\frac{1}{a^{-n}} = a^n$ 

7. 
$$2x^{-2}$$
  $\frac{2}{x^2}$ 

9. 
$$\frac{4x}{v^{-5}}$$
  $4xy^{5}$ 

11. 
$$\frac{2x^{4}y^{2}}{xy'} \cdot \frac{3x^{2}y'}{4x'}$$

$$4x^{2}y' = 3x^{2}y'$$

$$\frac{6x^{6}y^{3}}{2} = 3x^{4}y'$$

13. 
$$\frac{(3y)^{-3}}{4x^{-2}} = \frac{x^2}{4 \cdot \lambda 7y^3} =$$

15. 
$$u^{3}v^{2} \cdot (uv^{2})^{3}$$

$$u^{3}v^{2} \cdot u^{3}v^{6}$$

$$u^{6}v^{8}$$

8. 
$$x^{-3}y^{-2}$$

10. 
$$\frac{2}{(5x)^{-2}}$$
  $\frac{2(5x)^2}{1} = 50x^2$ 

12. 
$$\frac{16r^5s^9}{-2r's^2} \cdot \frac{r^2s'}{-8} = \frac{16r^7}{16rs^2} = \boxed{r^6s^8}$$

14. 
$$\frac{x^{-2}}{(x^{5}y^{-4})^{-2}} \quad \frac{(x^{5-4}y^{+2})^{+2}}{x^{2}} = \frac{x^{9}y^{-8}}{x^{2}} = \frac{x^{8}}{y^{8}}$$

16. 
$$\frac{r^{-2}}{4r^3 \cdot 4r^{-5}}$$
  $\frac{1}{16r^0r^2}$   $\frac{1}{16r^2}$ 

# CCGPS Analytic Geometry – Dec. 2, 2014 (Tues) Properties of Rational Exponents Homework - Mixed Practice

Product of Powers: Simplify using the property  $a^m \cdot a^n =$ 

a. 
$$2^{1/2} \cdot 2^{3/2}$$

b. 
$$3^{3/4} \cdot 3^{5/4}$$

c. 
$$5^{1/2} \cdot 5^{3/4}$$

Power of a Power: Simplify using the property  $(a^m)^n =$ \_\_\_\_\_

d. 
$$\left(4^{3/4}\right)^{2/3}$$

e. 
$$(6^{1/2})^4$$

f. 
$$(3^5)^{1/4}$$

Power of a Product: Simplify using the property  $(ab)^m =$ 

g. 
$$(2 \cdot 3^{1/2})^4$$

h. 
$$3^{3/4} \cdot 6^{3/4}$$

i. 
$$(4 \cdot 2)^{2/3}$$

Quotient of Powers: Simplify using the property  $\frac{a^m}{a^n} =$ 

j. 
$$\frac{2^{5/3}}{2^{1/3}}$$

k. 
$$\frac{5^{3/4}}{5^{1/2}}$$

I. 
$$\frac{7^5}{7^{2/3}}$$

Power of a Quotient: Simplify using the property  $\left(\frac{a}{b}\right)^m =$ 

m. 
$$\left(\frac{3}{4}\right)^{1/3}$$

n. 
$$\left(\frac{5}{2}\right)^{5/2}$$

o. 
$$\frac{6^{1/4}}{2^{1/4}}$$

1. 
$$9^{1/2} \cdot 9^{3/4}$$

$$2. \left(7^{2/3} \cdot 5^{1/6}\right)^3$$

$$3. \frac{3^{5/6}}{3^{1/3}}$$

$$4. \left(\frac{16^{2/3}}{4^{2/3}}\right)^4$$

$$5. \left(2^{1/2} \cdot 3^{3/4}\right)^{1/2}$$

$$6. \left(\frac{3^{5/4}}{7^{1/2}}\right)^2$$

$$7.\,\frac{10^{2/7}}{10^{1/2}}$$

8. 
$$\left(9^{4/5} \cdot 2^{1/2}\right)^{10}$$

9. 
$$2^{1/4} \cdot 8^{1/4}$$

$$10. \ \frac{10^{1/3}}{5^{1/3}}$$

# **CCGPS Analytic Geometry**

#### Name:

# Properties of Exponents Notes - Dec. 1, 2014 (Monday)



1. Product of like bases:  $a^m a^n = a^{m+n}$ 

2. Quotient of like bases:  $\frac{a^m}{a^n} = a^{m-n}$ 

3. Power to a power:  $(a^m)^n = a^{mn}$ 

4. Product to a power:  $(ab)^m = a^m b^m$ 

5. Quotient to a power:  $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 

6. Zero exponent:  $a^0 = 1$ 

7. Negative exponent:  $a^{-n} = \frac{1}{a^n}$ 

or

$$\frac{1}{a^{-n}} = a^n$$

## **Properties of Exponents**



<u>Practice Problems</u> – Simplify the expressions.

1.  $7^2 \bullet 7^3$ 

2.  $(2^3)^4$ 

3.  $(m^3)^2$ 

4.  $(4r)^2 \cdot r$ 

5.  $(3x)^3(-5y)^2$ 

6. x<sup>-4</sup>

Product of like bases:  $a^m a^n = a^{m+n}$ 

Quotient of like bases:  $\frac{a^m}{a^n} = a^{m-n}$ 

Power to a power:  $(a^m)^n = a^{mn}$ 

4. Product to a power:  $(ab)^m = a^m b^m$ 

5. Quotient to a power:  $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 6. Zero exponent:  $a^0 = 1$ 7. Negative exponent:  $a^{-n} = \frac{1}{a^n}$  or  $\frac{1}{a^{-n}} = a^n$ 

7. 2x<sup>-2</sup>

8.  $x^{-3}y^{-2}$ 

9.  $\frac{4x}{v^{-5}}$ 

10.  $\frac{2}{(5x)^{-2}}$ 

 $11. \frac{2x^4y^2}{xy} \bullet \frac{3x^2y}{4x}$ 

12.  $\frac{16r^5s^9}{-2rs^2} \bullet \frac{r^2s}{-8}$ 

13.  $\frac{(3y)^{-3}}{4x^{-2}}$ 

14.  $\frac{x^{-2}}{(x^5 y^{-4})^{-2}}$ 

15.  $u^3v^2 \cdot (uv^2)^3$ 

 $16. \quad \frac{r^{-2}}{4r^5 \cdot 4r^{-5}}$ 

#### **CCGPS** Analytic Geometry

Operations with Fractions - Review - Practice worksheet



Dec. 2, 2014 (Tues)

#### Adding and Subtracting two fractions To add (or subtract) two fractions:

- 1) Find the least common denominator.
- 2) Write both original fractions as equivalent fractions with the least common denominator.
- 3) Add (or subtract) the numerators.
- 4) Write the result with the denominator.

Examples:

a. 
$$\frac{3}{5} + \frac{1}{4}$$
.  $\frac{12}{20} + \frac{5}{20} = \boxed{17}$ 

$$b.3\frac{5}{7} - \frac{2}{3} = \frac{15}{21} - \frac{14}{21} = \boxed{1}$$

## Multiplying two fractions-

To multiply two fractions:

- 1) Multiply the numerator by the numerator.
- 2) Multiply the denominator by the denominator.

For all real numbers a, b, c,  $d(b \neq 0, d \neq 0)$ 

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Examples:

a. 
$$\frac{4}{5} * \frac{3}{4} = \frac{12}{20} + \frac{3}{5}$$

b. 
$$\frac{5}{8} * \frac{2}{7}$$

b. 
$$\frac{5}{8} * \frac{2}{7}$$
  $\frac{16}{56} = \frac{5}{28}$ 

#### **Dividing fractions -**

To divide by a fraction, multiply by its reciprocal.

For all real numbers a, b, c,  $d(b \neq 0, c \neq 0, d \neq 0)$ 

Examples:

a. 
$$\frac{3}{5} \div \frac{2}{3}$$
  $\frac{3}{5} \circ \frac{3}{2}$ 

b. 
$$\frac{5}{7} \div \frac{3}{4}$$
  $\frac{5}{7} \cdot \frac{4}{3}$ 

Mixed numbers can be written as an improper fraction and an improper fraction can be written as a mixed number.

Examples:

a. 
$$1\frac{1}{2}*1\frac{1}{4}$$
b.  $1\frac{1}{5} \div 2\frac{1}{4}$ 

$$\frac{3}{2} \cdot \frac{5}{4}$$

$$\frac{6}{5} \cdot \frac{9}{4}$$

$$\frac{1}{2}$$

$$\frac{8}{5} \cdot \frac{4}{9^{\frac{1}{3}}} \cdot \frac{8}{15}$$

A fraction is in lowest terms when the numerator and denominator have no common factor other than 1. To write a fraction in lowest terms, divide the numerator and denominator by the greatest common factor. "Your calculator will do this for you." 30SX or 36XPro

a. 
$$\frac{45}{75}$$
 =

b. 
$$\frac{6}{33}$$
 =