
CCGPS Analytic Geometry - Dec. 4, 2014 (Thurs)

Notes: Complex Numbers - Pages 2 - 10

Homework: Adding and Subtracting Complex Numbers Worksheet

Essential Question: What is a complex number? How do we add and subtract complex numbers?

Previously when we learned about radicals, we talked about how the square root of a negative number will not give us a real value. But, there are more numbers than just *REAL* numbers! The square root of a negative number is an ______number.

A complex number is a number in the form	, where bi is the
imaginary part and a is the real part. i is equal to	and <i>i</i> ² is

Examples: Solve the following radicals.

1.
$$\sqrt{-9}$$

2.
$$\sqrt{-100}$$

3.
$$10\sqrt{-36x^5}$$

4.
$$\sqrt{-12}$$

When we are adding and subtracting imaginary numbers, we can think of i like we do variables. For example, 2i + 3i = 5i. Also similar to variables, we cannot simplify the addition of real and imaginary numbers together. For example, 2 + 3i = 2 + 3i. We must combine like terms!

Examples: Solve the following complex expressions.

5.
$$(3 + 6i) + (4 - 2i)$$

6.
$$(18 + 5i) - 3(9 + 15i)$$

7.
$$(9-6i)-(12+2i)$$

8.
$$(8-3i)+(2+5i)$$

9.
$$(5+2\sqrt{-16})+(2+3\sqrt{-9})$$

10.
$$(1-3\sqrt{-20})-(7+2\sqrt{-45})$$

CCGPS Analytic Geometry – Dec. 4, 2014 Homework: Adding and Subtracting Complex Numbers

Simplify:

1.
$$\sqrt{-144}$$

2.
$$2 + \sqrt{-25}$$

3.
$$6 - \sqrt{-12}$$

4.
$$-4 + \sqrt{-49}$$

5.
$$(3-2\sqrt{-18})-(2+3\sqrt{-8})$$

6.
$$(4-3\sqrt{-12})-(8+\sqrt{-27})$$

7.
$$(27 + 13i) + (16 - 8i)$$

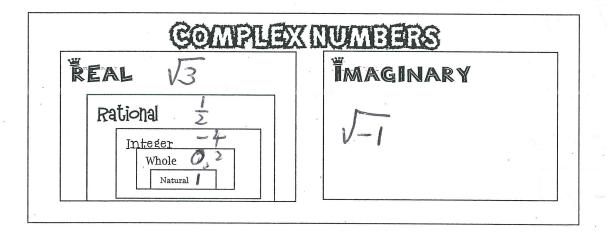
8.
$$(9i-2)-(6+18i)$$

9.
$$(5-4i)-2(7-20i)$$

10.
$$(12 + 4i) + (17 + 29i)$$

11.
$$(6i + 28) - 3(7 - 3\sqrt{-36})$$

12.
$$4(6-2\sqrt{-100})-(16+10i)$$


CCGPS Analytic Geometry – Dec. 4, 2014 (Thurs)

Notes: Complex Numbers - Pages 2 - 10

Homework: Adding and Subtracting Complex Numbers Worksheet

Essential Question: What is a complex number? How do we add and subtract complex numbers?

Previously when we learned about radicals, we talked about how the square root of a negative number will not give us a real value. But, there are more numbers than just *REAL* numbers! The square root of a negative number is an <u>imaginary</u> number.

	. / -		
A complex number is a number in the form _	atbu	$\underline{}$, where k	i is the
imaginary part and a is the real part. i is equ	ial to V-T	and i^2 is/	

Examples: Solve the following radicals.

1.
$$\sqrt{-9}$$
2. $\sqrt{-100}$
3. $10\sqrt{-36x^5}$
4. $\sqrt{-12}$
2. $\sqrt{9}$
2. $\sqrt{100}$
3. $10\sqrt{-36x^5}$
4. $\sqrt{-12}$
5. $\sqrt{3}$
6. $\sqrt{3}$
6. $\sqrt{3}$
6. $\sqrt{3}$
7. $\sqrt{3}$
7. $\sqrt{3}$
8. $\sqrt{3$

$$\begin{array}{c|c}
\hline
3i \\
\hline
10.i.6\sqrt{x^5} \\
60i\sqrt{x^5} \\
60i.x^2/x
\end{array}$$

When we are adding and subtracting imaginary numbers, we can think of i like we do variables. For example, 2i + 3i = 5i. Also similar to variables, we cannot simplify the addition of real and imaginary numbers together. For example, 2 + 3i = 2 + 3i. We must combine like terms!

Examples: Solve the following complex expressions.

$$3+6i+4-2i$$

7.
$$(9-6i)-(12+2i)$$

9.
$$(5+2\sqrt{-16})+(2+3\sqrt{-9})$$

10.
$$(1-3\sqrt{-20})-(7+2\sqrt{-45})$$

CCGPS Analytic Geometry - Dec. 4, 2014

Homework: Adding and Subtracting Complex Numbers

Simplify:

1.
$$\sqrt{-144}$$

2.
$$2 + \sqrt{-25}$$

3.
$$6 - \sqrt{-12}$$

5.
$$(3-2\sqrt{-18})-(2+3\sqrt{-8})$$

4.
$$-4 + \sqrt{-49}$$

6.
$$(4-3\sqrt{-12})-(8+\sqrt{-27})$$

7.
$$(27 + 13i) + (16 - 8i)$$

8.
$$(9i-2)-(6+18i)$$

9.
$$(5-4i)-2(7-20i)$$

10.
$$(12 + 4i) + (17 + 29i)$$

11.
$$(6i+28)-3(7-3\sqrt{-36})$$

12.
$$4(6-2\sqrt{-100})-(16+10/)$$