AP FRQ Review: Differential Equations

1) Non-Calculator

At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = -\frac{1}{4}(H-27)$, where H(t) is measured in degrees Celsius and H(0) = 91.

- (a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3.
- (b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3.
- (c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{dG}{dt} = -(G-27)^{2/3}$, where G(t) is measured in degrees Celsius and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the dH = = = (H-27)

a) find slope using
$$\frac{dH}{dt}$$
: $H'(0) = \frac{1}{4}(91-27) = -16$ $H(0) = 91$
point: (0.91) $| y-91 = -16(t-0)$ $| y(3) = -16(3) + 91 = 6$
slope: $m = -16$ $| y = -16t + 911$

point:
$$(0,91)$$
 $| y-91=-16(t-0)$ $| y(3)=-16(3)+91=43$ Celsius $| y(3)=-16(3)+91=43$ Celsius $| y(3)=-16(3)+91=43$ Celsius $| y(3)=-16(3)+91=43$

Slope:
$$M = -16$$
 $y = -16t + 91$ when $14 > 27^{\circ}$ $\frac{d^{2}H}{dt^{2}} = \frac{1}{4}(H-27)$ when $14 > 27^{\circ}$ $\frac{d^{2}H}{dt^{2}} > 0$ (concave up $\frac{d^{2}H}{dt^{2}} = \frac{1}{4}(\frac{dH}{dt})$ $\frac{d^{2}H}{dt^{2}} = \frac{1}{16}(H-27)$ is concave up and part (a) is an underestimate $\frac{dG}{dt} = -(G-27)^{2/3}$ $\frac{dG}{dt} = -(G-27)^{2/3}$ $\frac{1}{2}(G-27)^{2/3}$ $\frac{1}{2}(G-27)^{2/3}$

$$\begin{vmatrix} \frac{1}{27} \\ \frac{1}{24} \\ \frac{1}{4} \end{vmatrix} = \frac{1}{4} \left(\frac{1}{4} - \frac{1}{27} \right)$$

$$\begin{vmatrix} \frac{1}{4} \\ \frac{1}{4} \end{vmatrix} = \frac{1}{16} \left(\frac{1}{4} - \frac{1}{27} \right)$$

$$\frac{dG}{dt} = -(G-27)^{2/3} \left| \int_{0}^{2/3} (G-27)^{2/3} dG = -\int_{0}^{2/3} |dG| \right| = -\int_{0}^{2/3} |dG| = -\int$$

$$d(n = -(G-27)^{3}df$$

$$\int \frac{dG}{(G-27)^{2/3}} = \int -1df$$

$$u=G-27$$

$$du=1$$

$$\int u^{-2/3} du=-\int 1 dt$$

$$u''_3=-1+C$$

c)
$$\frac{dG}{dt} = -(G-27)^{2/3}$$

$$\int \frac{(G-27)^{2/3}}{dt} = -\int \frac{1}{3} \frac{$$

when H > 27° delt > 0 (concave)

$$(G-27)^{3} = -\frac{t+12}{3}$$

$$G-27 = \left(-\frac{t+12}{3}\right)^{3} \text{ continuous to the position of the p$$

G=
$$(-\frac{t+12}{3})^3+27$$

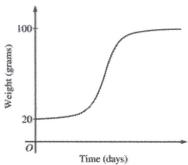
G(3)= $(-\frac{3+12}{3})^3+27$
= $27+27$
G(3)= 54°
Celsius

The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time t = 0, when the bird is first weighed, its weight is 20 grams. If B(t) is the weight of the bird, in grams, at time t days after it is first weighed, then

$$\frac{dB}{dt} = \frac{1}{5}(100 - B).$$

Let y = B(t) be the solution to the differential equation above with initial condition B(0) = 20.

- (a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
- (b) Find $\frac{d^2B}{dt^2}$ in terms of B. Use $\frac{d^2B}{dt^2}$ to explain why the graph of B cannot resemble the following graph.
- (c) Use separation of variables to find y = B(t), the particular solution to the differential equation with initial condition B(0) = 20.



a)
$$\frac{dB}{dt}\Big|_{B=40} = \frac{1}{5}(100-40)=12$$
 $\frac{dB}{dt}\Big|_{B=70} = \frac{1}{5}(100-70)=\frac{1}{5}(30)=6$
**Bird is gaining weight faster when it weighs 40 grams.

b) since $\frac{dB}{dt} = \frac{1}{5}(100) - \frac{1}{5}B$, then $\frac{d^2B}{dt^2} = \frac{1}{5}(\frac{dB}{dt})$, $\frac{d^2B}{dt^2} = \frac{1}{5}(\frac{1}{5}(100-B))$ $\frac{d^2B}{dt^2} = \frac{1}{25}(100-B)$. When 20 < B < 100, $\frac{d^2B}{dt^2} < 0$ meaning the graph is concave up for some portions of graph.

c)
$$\frac{dB}{dt} = \frac{1}{5}(100-B)$$

 $\frac{dB}{dt} = \frac{100-B}{5}$
 $5dB = (100-B)dt$

$$\int \frac{dB}{100-B} = \int \frac{dt}{5}$$

$$u=100-B$$

$$\frac{du}{dB} = -1$$

$$dB = -du$$

$$\frac{dB}{dt} = \frac{100 - B}{5}$$

$$\int \frac{1}{u}(-du) = \frac{1}{5} \int \frac{1}{1} dt \qquad | 100 - B| = Ce^{\frac{1}{5}t} \int \frac{1}{5} dt | | 100 - B| = Ce^{\frac{1}{5}t} \int \frac{1}{5} dt | | 100 - 20| = Ce^{\frac{1}{5}(0)} \int \frac{1}{(0,20)} dt | | 100 - B| = -\frac{1}{5}t + C$$

$$| 100 - B| = -\frac{1}{5}t + C$$

$$| 100 - B| = 80e^{\frac{1}{5}t}$$

$$| 100 - B| = 80e^{\frac{1}{5}t}$$

$$| 100 - B| = 80e^{\frac{1}{5}t}$$

$$| 100 - 80e^{\frac{1}{5}t} = B$$

$$| 100 - 80e^{\frac{1}{5}t} = B$$

$$| 100 - 80e^{\frac{1}{5}t} = B$$

At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. W is measured in tons, and t is measured in years from

- (a) Use the line tangent to the graph of W at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).
- (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$
- (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400.

a)
$$\#$$
 use $\frac{dW}{dt}$ to find slope. $\frac{dW}{dt} = \frac{1}{25}(W-300) \Rightarrow \frac{dW}{dt} \Big|_{t=0}^{t=25}(1400-300) = 44$

point:
$$(0, 1400)$$
 $| y-y| = m(x-x_1)$ $| w-1400| = 44(t-0)$ $| w(\frac{1}{4}) = 44(\frac{1}{4}) + 1400$ $| w(\frac{1}{4}) = 1411 \text{ tons}$

b) Since
$$\frac{dW}{dt} = \frac{1}{25}W - \frac{1}{25}(300)$$
 $\frac{d^2W}{dt^2} = \frac{1}{25}(\frac{1}{25}(W-300))$ $\frac{d^2W}{dt^2} = \frac{1}{25}(\frac{1}{25}(W-300))$ $\frac{d^2W}{dt^2} = \frac{1}{25}(\frac{1}{25}(W-300))$ $\frac{d^2W}{dt^2} = \frac{1}{625}(W-300)$

*Since W = 1400 and always increasing, $\frac{d^2W}{dt^2} > 0$, meaning W(t) is concave up.

If graph is concave up, then the linear approximation will be an underestimate.

c)
$$\frac{dW}{dt} = \frac{W-300}{25}$$
 $\int \frac{du}{u} = \frac{1}{25} \int 1 dt$ $W-300 = Ce^{\frac{1}{25}t}$

$$25dW = (W-300)dt$$

$$| \ln |u| = \frac{1}{25}t + C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$| W = Ce^{\frac{1}{25}t} + 300 = \text{solve for } C$$

$$e^{\ln|w-300|} = e^{\frac{1}{2}st} + C$$
 $C = 1100$

$$dw = du$$
 $|W - 300| = e^{\frac{1}{25}t} = e^{\frac{1}{25}t}$

$$\frac{(=1100)}{(=1100)^{\frac{1}{25}t}}$$

$$e^{x_1 w \cdot 300} = e^{25C + C}$$
 $|w - 300| = e^{25C} \cdot e^{C}$
 $|w(t) = 1100e^{C} + 300$

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.

(c) Find the particular solution
$$y = f(x)$$
 with initial condition $f(1) = 2$.

a) find slope using
$$\frac{dy}{dx} = xy^3 \frac{dy}{dx}\Big|_{(1,2)} = (1)(2)^3 = 8$$
 | $5/ope: m = 8$

b)
$$y = 8(x-1) + 2$$

 $y(1.1) \approx 8(1.1-1) + 2 \approx 2.8$
 $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2) > 0$

 $y(1.1) \approx 8(1.1-1)+2 \approx 2.8$ | since $\frac{d^2y}{dx^2} > 0$ | the function must be $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2) > 0$ | Concave up, so the line lies below the curve, so the approximation is an underestimation

 $4 - 4 = m(x - x_1)$

19-2=8(x-1)

c) Solve differential equation
$$\frac{dy}{dx} = xy^3$$

$$\frac{dy}{dy} = xy^3 dx$$

$$\frac{-\frac{1}{2}y^{-2}}{\frac{2}{2}} = \frac{x^2}{2} + C$$

$$\frac{-\frac{1}{2}}{2(2)^2} = \frac{1^2}{2} + C$$

$$\int \frac{-3}{4} dy = \int x dx$$

$$\frac{-\frac{1}{2}}{\frac{2}{2}} = \frac{1^2}{2} + C$$

$$\frac{-\frac{1}{2}}{\frac{2}} = \frac{1^2}{2} + C$$

$$dy = xy^{3}dx$$

$$dy = xy^{3}dx$$

$$-\frac{1}{2}y^{2} = \frac{x^{2}}{2} + C$$

$$\frac{1}{2}y^{3} = xdx$$

$$-\frac{1}{2}(2)^{2} = \frac{1^{2}}{2} + C$$

$$\frac{1}{2}y^{3}dy = \int xdx$$

$$-\frac{1}{8} = \frac{1}{2} + C$$

$$\frac{1}{8} = \frac{1}{2} + C$$

$$\frac{1}{8} = \frac{1}{2} + C$$

$$\frac{1}{8} = \frac{1}{2} + C$$

$$\frac{1}{2}y^{2} = \frac{x^{2}}{2} + C$$

$$\frac{1}{2}y^{2} = \frac{x^{2}}{2} + C$$

$$\frac{1}{2}(2)^{2} = \frac{1^{2}}{2} + C$$

$$\frac{1}{2}(2)^{$$