I. Equation of Tangent Lines

- 1. Find equation of tangent line
- a. What is the equation of the tangent to the curve $\sin(\pi x) + 9\cos(\pi y) = x^2y$ at (3, -1)?

WS #2

b. Find the equation of the tangent line to the curve $f(x) = \cos(3x) \cdot \sin^2(2x - \pi)$ at $x = \frac{\pi}{3}$

- 2. Tangent to curve and parallel/perpendicular to given line
- a. Find all points (x,y) on the graph y=x/(x-2) with tangent lines perpendicular to the line y=2x+7. Then find equations of the tangent lines.

b. Find an equation of the tangent line to the graph $y = \sqrt{x-3}$ that is perpendicular to 6x+3y-4=0.

c. Find an equation of the tangent line to the graph $y = x^3$ that is parallel to 3x - y - 4 = 0

Problem 14 The tangent to the curve $y = 2x^3 - 3x^2 - 6x$ is parallel to the line y = 6x - 1 at the point(s) x = (circle all that apply)

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2
- (F) 3

II. <u>Limit Definition of a Derivative</u>

Limit Definition of a Derivative: This is merely an expression for finding derivative or finding derivative at a point.	$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$
4a) Find $\lim_{h \to 0} \frac{(x+h)^4 - x^4}{h} =$	a) Find $\lim_{h \to 0} \frac{(2+h)^4 - 2^4}{h}$
b) Find $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$	c) Find $\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h} =$

III. PVA and Particle Motion

5. A particle moves along a horizontal line. Its position function is given by $x(t) = -t^2 + 6t + 27$ for values $0 \le t \le 4$.

- a. Find the displacement of the particle over the given time interval
- b. Find the distance the particle traveled over the given time interval
- c. At t = 2, is the particle's speed increasing or decreasing?

6. The position of a particle that is moving in a straight line is given by the equation

$$s = t^3 - 6t^2 + 9t$$

- (a) Find the displacement of the particle during the first five seconds.
- (b) Find the total distance traveled by the particle during the first 5 seconds.
- (c) When is the particle speeding up? When is it slowing down?

7. (Calculator section) An object moving along a line has velocity $v(t) = t\cos(t) - \ln(t+2)$, where $0 \le t \le 10$.

- a) For what value(s) of t is the object motionless?
- b) How many times does the object reverse direction?

Equation of Tangent Lines

- 1. Find equation of tangent line
- a. What is the equation of the tangent to $\cos(\pi x) \cdot \pi + 9 \cdot (-\sin(\pi y)) \cdot \pi \frac{dy}{dx} = 2xy + x^2 \frac{dy}{dx} \left[y + 1 = \frac{6 \pi}{9} (x 3) \right]$ a. What is the equation of the tangent to the curve $\sin(\pi x) + 9\cos(\pi y) = x^2y$ at (3, -1)? πcos(3π) - 9π sin(-π)dy = 2(3)(-1) + 9 dy $-\pi - 0 = -6 + 9 \frac{dy}{dx} \qquad \frac{dy}{dx} = \frac{6 - \pi}{9}$

- - a. Find all points (x,y) on the graph y=x/(x-2) with tangent lines perpendicular to the line y=2x+7. Then find 5 + 2x + 2x + 3 = 2x1) Find f(x)2) Find slope of given line on f(x).
 7) Plug into linear m=2 and perpendicular slope= $\frac{1}{2}$ 3) Find L slope of line f(x) and f(x) m=2 and f(x) f(x) f(x)4) set f(x) = L slope f(x)point: (0,0) | point: (4,0) slope: m= 1/2 slope: m=-1/
- b. Find an equation of the tangent line to the graph $y = \sqrt{x-3}$ that is perpendicular to 6x+3y-4=0 . $\rightarrow 3y=-6x-4 \rightarrow y=-2x-4/3$

$$f'(x) = \frac{1}{2(x-3)^{2}(1)}$$

$$f'(x) = \frac{1}{2\sqrt{x-3}}$$

$$\frac{1}{2\sqrt{x-3}} = \frac{1}{2\sqrt{x-3}}$$

$$\frac{1}{2$$

c. Find an equation of the tangent line to the graph $y = x^3$ that is parallel to 3x - y - 4 = 0

f'(x) =
$$3x^2$$
 | $m=3$ | $f(1) = (1)^3 = 1$ | $f(1$

Problem #3 The tangent to the curve $y = 2x^3 - 3x^2 - 6x$ is parallel to the line y = 6x - 1 at the point(s) x =

(A)
$$-2$$
 (B) -1 (C) 0 (D) 1 (E) 2 (F) 3
 $y' = 6x^2 - 6x - 6$ $6x^2 - 6x - 6 = 6$ $x = 2$, $x = -1$ (F) 3
For $y = 6x - 1$, $x^2 - x - 2 = 0$ $x = 6$ $(x - 2)(x + 1) = 0$

II. Limit Definition of a Derivative

Limit Definition of a Derivative:	$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$
This is merely an expression for finding	$f(c) = \lim_{h \to 0} \frac{1}{h}$
derivative or finding derivative at a point.	
$\hat{+}(x) = \lim_{x \to \infty} \frac{(x+h)^4 - x^4}{x^4}$	$f(2) = (2+h)^4 - 2^4$
4a) Find $h \to 0$ =	1 , 0 h
$f(x) = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h} = f(x) = x^4$	$f(x) = x^4$ $f'(2) = 4(2)^3 = 4.8 = 32$
f(x) = 4x3	$f'(x)=4x^3$
b) Find $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$	c) Find $\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h} =$
$f(x)=\sqrt{x}$	$f(x) = \sqrt{x} \qquad f(q) = \sqrt{19} = \sqrt{3}$ $f(x) = \sqrt{10}$
$f'(x) = \frac{1}{2}x^{-1/2} = \sqrt{2\sqrt{x}}$	$f(x) = \frac{1}{2\sqrt{x}}$
PVA and Particle Motion	

III.

- 5. A particle moves along a horizontal line. Its position function is given by $x(t) = -t^2 + 6t + 27$ for values $0 \le t \le 4$.
- a. Find the displacement of the particle over the given time interval

$$X(0) = 0 + 0 + 27 = 27$$

 $X(4) = -4^{2} + 6(4) + 27 = 35$
 $X(4) - X(0) = 35 - 27 = 8$

b. Find the distance the particle traveled over the given time interval * consider possible

c. At t = 2, is the particle's speed increasing or decreasing?

Increasing or decreasing?

$$a(t) = -2$$
 $v(2) = -2(2) + 6 = 2$
 $a(2)$ have opposite signs, speed is decreasing at $t = 2$.

6. The position of a particle that is moving in a straight line is given by the equation

$$s = t^3 - 6t^2 + 9t$$

 $\Rightarrow a(t) = 6t - 12 = 2$

(a) Find the displacement of the particle during the first five seconds.

$$5(0) = 0 + 0 + 0$$

$$5(5) = 5^{3} - 6(5)^{2} + 9(5) = 20$$

$$50 \ 5(5) - 5(0) = 20$$

(b) Find the total distance traveled by the particle during the first 5 seconds.

(c) When is the particle speeding up? When is it slowing down?

- 7. (Calculator section) An object moving along a line has velocity $v(t) = t\cos(t) \ln(t+2)$, where $0 \le t \le 10$.
- a) For what value(s) of t is the object motionless? when v(t)=0 X=5.107

$$x = 7.55$$

- b) How many times does the object reverse direction? twice at t=5.107,7.550

