AP FRQ Review: Differential Equations # 1) Non-Calculator At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = -\frac{1}{4}(H-27)$, where H(t) is measured in degrees Celsius and H(0) = 91. - (a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. - (b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. - (c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{dG}{dt} = -(G 27)^{2/3}$, where G(t) is measured in degrees Celsius and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3? # 2) Non-Calculator The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time t = 0, when the bird is first weighed, its weight is 20 grams. If B(t) is the weight of the bird, in grams, at time t days after it is first weighed, then $$\frac{dB}{dt} = \frac{1}{5}(100 - B).$$ Let y = B(t) be the solution to the differential equation above with initial condition B(0) = 20. - (a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning. - (b) Find $\frac{d^2B}{dt^2}$ in terms of B. Use $\frac{d^2B}{dt^2}$ to explain why the graph of B cannot resemble the following graph. - (c) Use separation of variables to find y = B(t), the particular solution to the differential equation with initial condition B(0) = 20. ### 3) Non-Calculator At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010. - (a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$). - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$. - (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400. # 4) Non-Calculator Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1 + 3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2. - (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1. - (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning. - (c) Find the particular solution y = f(x) with initial condition f(1) = 2.