
AP Review FRQ Topic: Functions and Tables

1) Non-Calculator

х	g(x)	g'(x)
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h

Let f be the function defined by $f(x) = \cos(2x) + e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

- (a) Find the slope of the line tangent to the graph of f at $x = \pi$.
- (b) Let k be the function defined by k(x) = h(f(x)). Find $k'(\pi)$.
- (c) Let m be the function defined by $m(x) = g(-2x) \cdot h(x)$. Find m'(2).
- (d) Is there a number c in the closed interval [-5, -3] such that g'(c) = -4? Justify your answer.

2) Non-Calculator

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate
$$\int_{1}^{3} f''(2x) dx$$
.

3) Non-Calculator

x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < x < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	1/2
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	3/2	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.
- (c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.
- (d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.

4) Non-Calculator

х	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.