<u>Central Angle</u> *central angle is equal to the arc between the endpoints

Inscribed Angle *inscribed angle is half the measure of the arc between endpoints

Angle inside circle:

$$50 \qquad \angle 1 = \frac{1}{2} \left(\widehat{AB} + \widehat{CD} \right)$$

$$\angle 2 = \frac{1}{2} (\widehat{AD} + \widehat{BC})$$

$$m = \frac{30+50}{2}$$

$$|angle = \frac{arc1 + arc2}{2}$$

Angle Outside circle:

$$\angle 1 = \frac{1}{2} (\widehat{BC} - \widehat{AC})$$

$$mL1 = \frac{100-20}{2}$$

$$\angle 2 = \frac{1}{2} (ABC - AC)$$

$$mL2 = \frac{300-40}{2}$$

$$m = \frac{1}{2}(BC - AD)$$
 $m = \frac{1}{2}(BC - AD)$

Chord segment lengths:
part * part = part * part

Secant segment lengths:
outside * whole = outside * whole

Secant/tangent segment lengths:
outside * whole = outside * whole

Inscribed Quadrilateral

$$A + C = 180$$
$$B + D = 180$$

Ch. 10 Circles Concept Review

 $m \angle AOB = m\widehat{AB}$

Intersecting Chords inside circle:

$$m \angle BED = \frac{1}{2}(m\widehat{BD} + m\widehat{AC})$$

$$\sum_{n=\frac{1}{2}}^{70^{n}} X = \frac{1}{2} (70 + 170)$$

Inscribed Angles:

$$m \angle ABC = \frac{1}{2}\widehat{mAC}$$

X=1/2(100)=500

$X = \frac{1}{2}(120) = 50^{\circ}$ $X = \frac{1}{2}(120) = 60^{\circ}$ Angle outside circle formed by secants/tangents:

$$m \angle ACE = \frac{1}{2}(m\widehat{AE} - m\widehat{BD})$$
 $X = \frac{1}{2}(80 - 20)$

 $\mathbf{c}^{X=\frac{1}{2}(60)}$

Angle outside circle formed by secants/tangents:

$$m \angle ABC = \frac{1}{2} (m\widehat{AFC} - m\widehat{AC})$$

Angle outside circle formed by secants/tangents:

$$m\angle ABD = \frac{1}{2}(m\widehat{AD} - m\widehat{AC})$$

 $X = \frac{1}{2}(100 - 30)$

Inscribed Quadrilateral Property:

Congruent chords in circle:

$$\widehat{M} = \widehat{X}\widehat{Y}$$

图 Z=70°

$LM \cong XY \text{ and } \widehat{LM} \cong \widehat{XY}$

Inscribed Angles intercepting same arc:

Inscribed Angle Intercepting diameter:

Line tangent to circle is perpendicular to radius:

$$5^2 + X^2 = 13^2$$

$$x^2 = 13^2 - 5^2$$

Chord segment lengths: part * part = part * part

$$3x = 6(4)$$

Secant segment lengths: outside * whole = outside * whole

$$4x+16=96$$

Tangents to circles are congruent: (party hat problems):

$$7x-3=5x+1$$

$$2x=4$$

$$[x=2]$$

Secant/tangent segment lengths: outside * whole = outside * whole

$$\times \cdot \times = 4(4+8)$$

$$x^{2} = 4(12)$$

 $x^{2} = 48$

$$x^2 = 48$$

Ch. 10 Circles Concept Review

Central Angle:

 $m \angle AOB = m\widehat{AB}$

Inscribed Angles:

 $m\angle ABC = \frac{1}{2}\widehat{mAC}$

Intersecting Chords inside circle:

$$m \angle BED = \frac{1}{2} (m\widehat{BD} + m\widehat{AC})$$

Angle outside circle formed by secants/tangents:

$$m \angle ACE = \frac{1}{2}(m\widehat{AE} - m\widehat{BD})$$

Angle outside circle formed by secants/tangents:

$$m \angle ABC = \frac{1}{2} (m\widehat{AFC} - m\widehat{AC})$$

Angle outside circle formed by secants/tangents:

$$m \angle ABD = \frac{1}{2}(m\widehat{AD} - m\widehat{AC})$$

Inscribed Quadrilateral Property:

Congruent chords in circle:

 $\overline{LM} \cong \overline{XY}$ and $\widehat{LM} \cong \widehat{XY}$

Inscribed Angles intercepting same arc:

Inscribed Angle Intercepting diameter:

Line tangent to circle is perpendicular to radius:

Tangents to circles are congruent: (party hat problems):

Chord segment lengths:
part * part = part * part

Secant segment lengths:
outside * whole = outside * whole

<u>Secant/tangent segment lengths:</u> outside * whole = outside * whole

