Additional Limits Topic FRQ Practice

1) Step through Continuity Conditions and find the value of ' \mathbf{a} ' such that the f(x) is continuous

$$f(x) = \begin{cases} 3x^3, & x \le 1\\ ax + 5, & x > 1 \end{cases}$$

2)

The function f is defined on all the reals such that $f(x) = \begin{cases} x^2 + kx - 3 & \text{for } x \le 1 \\ 3x + b & \text{for } x > 1. \end{cases}$

For which of the following values of k and b will the function f be both continuous and differentiable on its entire domain?

Particle Motion Practice Problem

- 3) Two particles move along the x-axis. For $0 \le t \le 8$, the position of particle P at time t is given by $x_P(t) = \ln(t^2 2t + 10)$, while the velocity of particle Q at time t is given by $v_Q(t) = t^2 8t + 15$. Particle Q is at position x = 5 at time t = 0.
 - (a) For $0 \le t \le 8$, when is particle P moving to the left?
 - (b) For $0 \le t \le 8$, find all times t during which the two particles travel in the same direction.
 - (c) Find the acceleration of particle Q at time t = 2. Is the speed of particle Q increasing, decreasing, or neither at time t = 2? Explain your reasoning.

Additional Limits Topic FRQ Practice

1) Step through Continuity Conditions and find the value of 'a' such that the f(x) is continuous

$$f(x) = \begin{cases} 3x^3, & x \le 1\\ ax + 5, & x > 1 \end{cases}$$

$$(ii)f(c) = \lim_{x \to c} f(x)$$

i)
$$f(i) = 3(i)^3 = 3$$

ii) $\lim_{x \to 1^-} 3x^3 = \boxed{3}$ $\lim_{x \to 1^+} ax + 5 = a(i) + 5$

$$3=a+5$$

$$-2=a$$

$$f(x) = \begin{cases} 2x + K, & x \le 1 \\ 3, & x > 1 \end{cases}$$

The function f is defined on all the reals such that $f(x) = \begin{cases} x^2 + kx - 3 & \text{for } x \le 1 \\ 3x + b & \text{for } x > 1. \end{cases}$

For which of the following values of k and b will the function f be both continuous and

at
$$x=1$$
:

$$x^{2}+kx-3=3x+b$$

$$(1)^2 + k(1) - 3 = 3(1) + 6$$

$$2x+K = 3$$

 $2(1)+K = 3$
 $2+K=3$
 $-(K=1)$

Particle Motion Practice Problem

- Ke
- Two particles move along the x-axis. For $0 \le t \le 8$, the position of particle P at time t is given by $x_P(t) = \ln(t^2 2t + 10)$, while the velocity of particle Q at time t is given by $v_Q(t) = t^2 8t + 15$. Particle Q is at position x = 5 at time t = 0.
 - (a) For $0 \le t \le 8$, when is particle P moving to the left?
 - (b) For $0 \le t \le 8$, find all times t during which the two particles travel in the same direction.
 - (c) Find the acceleration of particle Q at time t = 2. Is the speed of particle Q increasing, decreasing, or neither at time t = 2? Explain your reasoning.
 - a) particle P: $x(t) = \ln(t^{2}-2t+10)$ $x'(t) = \frac{2t-2}{t^{2}-2t+10}$
- $\frac{2}{2x} \ln u = \frac{u}{u}$ $\frac{2}{4} 2 = 0 \qquad | \ t^2 2t + 10 = 0$ $t = 1 \qquad | \ \text{none} |$ $t^2 2t + 10 > 0$
- V(t) + + + 8
- particle P moving left 05t<1
- b) particle Q: V2(t) = t^2-8t+15
- 0 = (t-3)(t-5)t=3.5
- - (particle P)

(particle Q)

- Both particles move in same direction in intervals (1,3) and (5,8]
 - Same direction in intervals (1,3) and (5,8)
 ble velocities of both particles have same signs
- C) particle Q:

$$V_2(t) = t^2 - 8t + 15$$

$$V_2(2) = 2^2 - 8(2) + 15 = 3 > 0$$

At t=2, since $a_2(t)$ and $v_2(t)$ have opposite signs, the speed of particle is decreasing.