Lines & Angles Definitions

Parallel lines (II) – lines that are coplanar & do not intersect

l l m

 Skew lines – lines that are not coplanar & do not intersect.

Parallel planes – 2 planes that do not intersect.
Example: the floor & the ceiling

Postulate: Il postulate

 If there is a line & a point not on the line, then there is exactly one line through the point II to the given line.

Postulate: **L** Postulate

 If there is a line & a point not on the line, then there is exactly one line through the point that is ⊥ to the given line.

Transversal

• A line that intersects 2 or more coplanar lines at different points.

Interior $\leq s - \leq 3, \leq 4, \leq 5, \leq 6$ (inside l & m)

Exterior <s - <1, <2, <7, <8 (outside [& m)

<u>Alternate Interior <s</u> - <3 & <6, <4 & <5 (alternate –opposite sides of the transversal)

Alternate Exterior <s - <1 & <8, <2 & <7

Consecutive Interior <s - <3 & <5, <4 & <6 (consecutive – same side of transversal)

| Corresponding <s - <1 & <5, <2 & <6, <3 & <7, <4 & <8 (same location)

Il Lines & Transversals

Postulate — Corresponding ∠s Postulate

 If 2 | lines are cut by a transversal, then the pairs of corresponding ∠s are ≅.

• i.e. If $\ell \mid m$, then $\angle 1 \cong \angle 2$.

Alternate Interior ∠s Theorem

• If 2 | | lines are cut by a transversal, then the pairs of alternate interior ∠s are ≅.

• i.e. If $\ell \mid m$, then $\angle 1 \cong \angle 2$.

Consecutive Int. ∠s theorem

 If 2 | | lines are cut by a transversal, then the pairs of consecutive int. ∠s are supplementary.

• i.e. If $\ell \mid m$, then $\angle 1 \& \angle 2$ are supp.

L1+L2=180

Alterior Exterior. ∠s Theorem

 If 2 | lines are cut by a transversal, then the pairs of alternate exterior ∠s are ≅.

• i.e. If $\ell \mid m$, then $\angle 1 \cong \angle 2$.

⊥ Transversal Theorem

 If a transversal is ⊥ to one of 2 | | lines, then it is ⊥ to the other.

- i.e. If $\ell \mid m$, & $t \perp \ell$, then $t \perp m$.
- ** ∠1 & 2 added for proof purposes.

Practice A

For use with pages 129-134

Think of each segment in the diagram as part of a line. Fill in the blank with *parallel, skew,* or *perpendicular.*

- 1. \overrightarrow{AB} and \overrightarrow{DC} are ?
- 2. \overrightarrow{AB} and \overrightarrow{BC} are ? .
- 3. \overrightarrow{BF} and \overrightarrow{FG} are ?.
- **4.** \overrightarrow{AB} and \overrightarrow{FG} are ?.

- **5.** Name a line parallel to \overrightarrow{MN} .
- **6.** Name a line-perpendicular to \overrightarrow{PR} .
- 7. Name a line skew to \overrightarrow{SN} .
- 8. Name a plane parallel to plane RPL.

- **9.** $\angle 3$ and $\angle 7$ are ? angles.
- **10.** $\angle 4$ and $\angle 10$ are __? angles.
- 11. $\angle 5$ and $\angle 8$ are $\underline{}$? angles.
- 12. $\angle 8$ and $\angle 6$ are ? angles.
- 13. $\angle 9$ and $\angle 5$ are $\underline{}$? angles.
- **14.** $\angle 5$ and $\angle 7$ are ? angles.

Answer true or false.

- 15. The hands of a clock are perpendicular at 3:00 and 9:00.
- 16. If two lines do not intersect, then they are parallel.
- 17. The perpendicular postulate states that for a point on a line, there is exactly one line through the point perpendicular to the line.
- **18.** The parallel postulate states that for a point not on a line, there is exactly one line through the point parallel to the line.

Use the diagram to answer the question.

- 19. Name all pairs of vertical angles.
- 20. Name all pairs of corresponding angles.
- 21. Name all pairs of alternate interior angles.

Practice B

For use with pages 129-134

Think of each segment in the diagram as part of a line. Fill in the blank with *parallel, skew,* or *perpendicular.*

- 1. \overrightarrow{UT} and \overrightarrow{WT} are ?
- 2. \overrightarrow{RS} and \overrightarrow{VW} are $\frac{?}{}$.
- 3. \overrightarrow{TU} and \overrightarrow{WX} are $\underline{?}$.
- **4**. plane *VWT* and plane *RSX* are __?_.
- **5.** plane *RST* and plane *SXW* are __?_.

Think of each segment in the diagram as part of a line. There may be more than one correct answer.

- **6.** Name a line parallel to \overleftrightarrow{HJ} .
- 7. Name a line perpendicular to \overrightarrow{LM} .
- 8. Name a line skew to \overrightarrow{GH} .
- 9. Name a plane parallel to plane GHJ.
- 10. Name a plane perpendicular to plane KLM.

Complete the statement with *corresponding, alternate interior, alternate exterior,* or *consecutive interior.*

- 11. $\angle 6$ and $\angle 10$ are $\underline{?}$ angles.
- **12.** $\angle 7$ and $\angle 9$ are ? angles.
- 13. $\angle 8$ and $\angle 9$ are __? angles.
- **14.** $\angle 12$ and $\angle 8$ are ? angles.
- **15.** $\angle 5$ and $\angle 11$ are $\underline{}$? angles.
- **16.** $\angle 8$ and $\angle 10$ are $\underline{}$ angles.

Use the diagram of the Ferris wheel to decide whether the statement is *true* or *false*.

- 17. At any position around the wheel, the line containing the crossbar, \overrightarrow{AB} , of each cart is parallel to the ground.
- 18. For any cart of the Ferris wheel, the line containing the back support, \overrightarrow{CD} , and the line containing the crossbar, \overrightarrow{AB} , are skew lines.
- 19. At any position around the wheel, the line containing the back support, \overrightarrow{DC} , is perpendicular to the ground.

