Basic Geometry Vocabulary – A definition uses known words to describe a new word. In geometry, some words, such as *point*, *line*, and *plane* are undefined terms. Although these words are not formally defined, it is important to have general agreement about what each word means.

A **point** has no dimension. It is usually represented by a small dot.

A **line** extends in one dimension. It is usually represented by a straight line with two arrowheads to indicate that the line extends without end in two directions. For our purposes, lines are always straight lines.

A **plane** extends in two dimensions. It is usually represented by a shape that looks like a tabletop or wall. You must imagine that the plane extends without end, even though the drawing of a plane appears to have edges.

Point A

Line l or \overrightarrow{AB}

Plane M or plane ABC

A few concepts in geometry must also be commonly understood without being defined. One such concept is the idea that a point *lies on* a line or a plane.

Collinear points are points that lie on the same line.

Coplanar points are points that lie on the same plane.

What is a line segment?

What is a ray?

In geometry, rules that are accepted without proof are called **postulates** or **axioms**. Rules that are proved to be true are called *theorems*.

Segment congruence Postulate: If two segment have the same length, then they are congruent.

SEGMENT ADDITION POSTULATE: If point Y lies between points X and Z, then

Examples:

1. EG = _____

3. If HJ = 10x - 13, find x.

2. If EG = 11, find EF.

4. If HJ = 26, find x.

	2x		
Н	X ² +3X	X + 5	J

SEGMENT BISECTOR:

A segment bisector is a ______ that divides a ______ that or may not be

Examples:

1. If \overrightarrow{SU} is a segment bisector of \overline{RT} , find RT.

2. If \overrightarrow{SU} is a segment bisector of \overline{RT} , find RS and RT.

The Segment Addition Postulate

Find the length indicated.

1)
$$H \stackrel{?}{\longleftarrow} \frac{1}{G} F$$

3)
$$T \stackrel{?}{\longleftarrow} \begin{array}{c} 20 \\ U \\ \hline \end{array}$$

4)
$$C \stackrel{14}{\longleftarrow} \stackrel{?}{\longleftarrow} E$$

Points A, B, and C are collinear. Point B is between A and C. Find the length indicated.

9) Find AC if AB = 16 and BC = 12.

10) Find AC if AB = 13 and BC = 9.

Points A, B, and C are collinear. Point B is between A and C. Solve for x.

11)
$$AC = 3x + 3$$
, $AB = -1 + 2x$, and $BC = 11$.
Find x .

12)
$$AC = 22$$
, $BC = x + 14$, and $AB = x + 10$.
Find x.

Solve for x.

13)
$$N \xrightarrow{x-6} 9 \xrightarrow{2x-19} K$$

14)
$$S \xrightarrow{13} \begin{array}{c} 6 & 2x-18 \\ \hline T & U \\ \hline 4x-29 \end{array}$$

Find the length indicated.

15) Find
$$CE$$

$$B \xrightarrow{3x+47} 10$$

$$C \xrightarrow{D}$$

$$27+x$$

$$x+26$$

17) Find
$$DE$$

$$D \xrightarrow{3x-28} \xrightarrow{3x-30} \xrightarrow{x} G$$

$$E \xrightarrow{F}$$
33

Critical thinking questions:

- 19) Points A, B, C, D, and E are collinear and in that order. Find AC if AE = x + 50 and CE = x + 32.
- 20) Write a segment addition problem using three points (like question 11) that asks the student to solve for x but has a solution x = 20.

Basic Geometry Vocabulary – A definition uses known words to describe a new word. In geometry, some words, such as *point*, *line*, and *plane* are undefined terms. Although these words are not formally defined, it is important to have general agreement about what each word means.

A **point** has no dimension. It is usually represented by a small dot.

A **line** extends in one dimension. It is usually represented by a straight line with two arrowheads to indicate that the line extends without end in two directions. For our purposes, lines are always straight lines.

A **plane** extends in two dimensions. It is usually represented by a shape that looks like a tabletop or wall. You must imagine that the plane extends without end, even though the drawing of a plane appears to have edges.

Point A Line l or \overrightarrow{AB} Plane M or plane ABC

A few concepts in geometry must also be commonly understood without being defined. One such concept is the idea that a point *lies on* a line or a plane.

Collinear points are points that lie on the same line.

Coplanar points are points that lie on the same plane.

What is a line segment? a line consisting of the endpoints and all the points between the endpoints

What is a ray? consists of an initial point and all points AB that lie on the same side of A as point B A. B.

In geometry, rules that are accepted without proof are called **postulates** or **axioms**. Rules that are proved to be true are called *theorems*.

Segment congruence Postulate: If two segment have the same length, then they are congruent.

SEGMENT ADDITION POSTULATE: If point Y lies between points X and Z, then $\underline{XY + YZ} = X\overline{Z}$.

Examples:

1. EG = EF + FG

3. If HJ = 10x - 13, find x.

2. If EG = 11, find EF.

$$EF+FG=EG$$

4. If HJ = 26, find x.

Н.	X^2+3X	X + 5	J
0			

SEGMENT BISECTOR:

A segment bisector is a <u>Segment ray</u>, line or plane that divides a <u>line</u>

<u>Segment into two equal parts</u>. It may or may not be

<u>Serpendicular</u>.

Examples:

1. If \overrightarrow{SU} is a segment bisector of \overline{RT} , find RT.

2. If \overrightarrow{SU} is a segment bisector of \overline{RT} , find RS and RT.

The Segment Addition Postulate

Find the length indicated.

1)
$$H \xrightarrow{?} G F$$

3)
$$T \xrightarrow{?} 20$$
 U
 32

2)
$$R \stackrel{1}{\underset{S}{\longleftarrow}} T$$

4)
$$C \stackrel{14}{\longrightarrow} D \stackrel{E}{\longrightarrow} E$$

6) Find
$$HJ$$

$$G \xrightarrow{2} 5 12$$

$$H I$$

$$7$$

8) Find
$$IK$$

$$I \xrightarrow{18} 12 \qquad I \xrightarrow{19} L$$

$$49$$

Points A, B, and C are collinear. Point B is between A and C. Find the length indicated.

9) Find AC if AB = 16 and BC = 12.

10) Find AC if AB = 13 and BC = 9.

Points A, B, and C are collinear. Point B is between A and C. Solve for x.

11) AC = 3x + 3, AB = -1 + 2x, and BC = 11.

Find x.

$$AC = AAB + BCB$$

$$3\times+3=-1+2\times+11$$

Solve for x.

Find the length indicated.

15) Find CE

12) AC = 22, BC = x + 14, and AB = x + 10. Find *x*.

$$22 = 2x + 24$$

 $-2 = 2x [x = -1]$

$$4x - 29 = 1 + 2x$$

$$2x = 30$$
 $x=15$

16) Find *BD*

17) Find *DE*

18) Find EG

Critical thinking questions:

- 19) Points A, B, C, D, and E are collinear and in that order. Find AC if AE = x + 50 and CE = x + 32.
- 20) Write a segment addition problem using three points (like question 11) that asks the student to solve for x but has a solution x = 20.

Points A, B, and C are collinear. Point B is between A and C. Solve for x.

11) AC = 3x + 3, AB = -1 + 2x, and BC = 11. Find x.

7

12) AC = 22, BC = x + 14, and AB = x + 10. Find x.

-1

Solve for x.

14) $S \xrightarrow{13} \begin{array}{c} 6 & 2x-18 \\ \hline T & U \\ \hline 4x-29 \end{array}$

Find the length indicated.

15) Find
$$CE$$

$$B \xrightarrow{3x+47} 10$$

$$C \xrightarrow{D}$$

$$27+x$$

$$x+26$$

16) Find BD $\begin{array}{c|c}
B & \xrightarrow{2} & E \\
\hline
 & C & D \\
\hline
 & 2x-3 \\
\hline
 & 2x-4 \\
\hline
 & 3x-1 \\
\hline
 & 12
\end{array}$

17) Find DE $D \xrightarrow{3x-28 \quad 3x-30 \quad x}$ $E \xrightarrow{F}$ 33

18) Find EG $E \xrightarrow{14+x} F \xrightarrow{G} H$ 26+x |x+23|18

Critical thinking questions:

- 19) Points A, B, C, D, and E are collinear and in that order. Find AC if AE = x + 50 and CE = x + 32. AC = AE CE = 18
- 20) Write a segment addition problem using three points (like question 11) that asks the student to solve for x but has a solution x = 20.
 Many possibilities: AB = x, BC = 20, AC = 40