CCGPS Analytic Geometry Day 1: Solving Systems of Equations

Substitution Method:

- 1. Choose one equation and solve for one variable on one side (either the x or the y)
- 2. Substitute the solution from step 1 into the second equation and solve for the variable in the equation.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- 4. Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- 1. Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- 2. If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- 3. Subtract one equation from the other.
- 4. Solve the resulting equation for the one variable.
- 5. Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.
- 6. Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

Warm up: Solve the systems.

$$1. \quad 2x + 3y = 8$$
$$y = x - 4$$

$$2. \quad 5x - 2y = -1 \\
10y - 2 = 10x$$

3.
$$6x + 14y = 28$$

 $3x + 7y = 11$

Example 1:

$$x = y^2 - 6$$

y = x

How many solutions are possible? Solve the system:

Substitution Method:

- 1. Choose one equation and solve for one variable on one side (either the x or the y)
- 2. Substitute the solution from step 1 into the second equation and solve for the variable in the equation.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- 4. Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- 1. Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- 2. If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- 3. Subtract one equation from the other.
- 4. Solve the resulting equation for the one variable.
- 5. Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.
- 6. Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

Example 2:

$$x^2 + y = 14$$

$$y = x + 2$$

How many solutions are possible? Solve the system:

$$\overline{x^{2x} - 2x + y} - 2y = 0$$

$$y + x = 2$$

$$y^2 - 4x = 0$$

$$y - 2x = -4$$

CCGPS Analytic Geometry Day 1: Solving Systems of Equations Homework

Substitution Method:

- 1. Choose one equation and solve for one variable on one side (either the x or the y)
- 2. Substitute the solution from step 1 into the second equation and solve for the variable in the equation.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- 4. Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- 1. Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- 2. If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- 3. Subtract one equation from the other.
- 4. Solve the resulting equation for the one variable.
- 5. Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.
- 6. Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

Solve each system.

1.
$$x^2 - y + 5 = 0$$

$$x - y + 5 = 0$$

2.
$$(x+3)^2 - y = 4$$

$$4x + y = 16$$

$$3. x^2 + y - 3 = 0$$

$$x + y = 1$$

$$4. x^2 - 2x + 4y = 3$$

$$x - y = 3$$

$$5. \ 3x + y^2 + 2 = 9$$

$$x = y + 1$$

6.
$$x^2 + y = 10$$

$$3x + y = 6$$

7.
$$y^2 - y + 4x + 10 = 0$$

 $-2x + 4y = 2$

Key

Substitution Method:

- 1. Choose one equation and solve for one variable on one side (either the x or the y)
- 2. Substitute the solution from step 1 into the second equation and solve for the variable in the equation.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- 4. Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- 1. Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- 2. If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- 3. Subtract one equation from the other.
- 4. Solve the resulting equation for the one variable.
- 5. Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.
- 6. Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

Warm up: Solve the systems.

1.
$$2x + 3y = 8$$
 Substitution
 $y = x - 4$
 $2x + 3(x - 4) = 8$
 $2x + 3x - 12 = 8$
 $5x = +20$

v = x

2.
$$5x - 2y = -1$$

 $10y - 2 = 10x$
 $5x - 2y = -1$
 $-10x + 10y = 2$

$$2(5x - 2y = -1)$$

 $-10x + 10y = 2$

$$10x - 4y = -2$$

 $-10x + 10y = 2$

$$0 + 6y = 0$$

$$5x - 2y = -1$$

$$5x - 0 = -1$$

$$x = -1/5$$

3.
$$6x + 14y = 28$$
 $-2(3x + 7y = 11)$

$$6x + 14y = 28$$

$$-6x - 14y = -22$$

$$0 + 0 = 6$$
No solution
(lines do not intersect)
parallel lines.

$$X = X^{2} - 6$$

$$0 = X^{2} - X - 6$$

$$\frac{3 \cdot 6}{2} = \frac{-3 \times 2 = -6}{3 + 2 = -1}$$

$$\frac{3 \cdot 7 \cdot 7}{6} = \frac{3 \times 2 = -6}{3 \times 2 = -1}$$

$$(x-3)(x+2) = 0$$

 $x=3, x=-2$
 $y=x$

How many solutions are possible? Solve the system:

Substitution Method:

- Choose one equation and solve for one variable on one side (either the x or the y)
- Substitute the solution from step 1 into the second equation and solve for the variable in the equation. 2.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- Subtract one equation from the other.
- Solve the resulting equation for the one variable.
- Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.

(x+4)(x-3)=0

Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

Example 2:

 $x^2 + y = 14$

How many solutions are possible? v = x + 2

Solve the system:

$$x^{2}+(x+2)=14$$

 $x^{2}+x+2-14=6$
 $x^{2}+x-12=0$

$$x^{2} + x + 2 - 14 = 0$$

 $x^{2} + x - 12 = 0$
 $(4)^{-12}/(3)$

$$x+4=0 | x-3=0$$
 $x=-4 | x=3$

$$y = x + 2$$
 plug x=4
 $y = -4 + 2 = -2$
 $(-4, -2)$

$$y = x + 2$$
 $p \log \ln x = 3$
 $y = 3 + 2 = 5$
 $(3, 5)$

Example 3:

$$x^2 - 2x + y - 2y = 0$$

$$y + x = 2$$

$$x^{2}-2x+(2-x)-2(2-x)=0$$

$$x^{2}-2x+2-x-4+2x=0$$

$$x^2 - x - 2 = 0$$

$$\frac{-2^{-2}}{1-1}$$

$$(x-2)(x+1) = 0$$

$$x=2, x=-1$$

Example 4: $y^2 - 4x = 0$

$$y^2 - 4x = 0$$

$$y - 2x = -4$$

$$y = -4 + 2x = 2x - 4$$

$$(2x-4)^2-4x=0$$

$$4x^2 - 16x + 16 - 4x = 0$$

$$4x^2 - 20x + 16 = 0$$

$$4(x^2-5x+4)=0$$

$$4(x-4)(x-1)=0$$

 $x=4, x=1$

$$y-2x=-4$$
 $y-2=-4$
 $y-2=-4$
 $y=-2$
 $(1,-2)$

$$y-2x=-4$$
 $plug x=4$
 $y-2(4)=-4$
 $y-8=-4$
 $y=4$
 (44)

Substitution Method:

- 1. Choose one equation and solve for one variable on one side (either the x or the y)
- 2. Substitute the solution from step 1 into the second equation and solve for the variable in the equation.
- 3. Using the value found in step 2, substitute it into the first equation and solve for the second variable.
- 4. Substitute the values for both variables into both equations to show they are correct.

Elimination Method (Addition/Subtraction Method)

- 1. Algebraically adjust both equations so that all the variables and constants are lined up and in the same order
- 2. If needed, multiply one of the equations by a constant so that there is one variable in each equation that has the same coefficient.
- 3. Subtract one equation from the other.
- 4. Solve the resulting equation for the one variable.
- 5. Using the value found in the step 4, substitute it into either equation and solve for the remaining variable.
- 6. Substitute the values for both variables into the equation not used in step 5 to be sure our solution is correct.

$$5. \ 3x + y^2 + 2 = 9$$

$$x = y + 1$$

$$3(y+1)+y^{2}+2=9$$

$$3y+3+y^{2}-7=0$$

$$y^{2}+3y-4=0$$

$$\frac{4^{-4}-1}{1/3} \frac{(y+4)(y-1)=0}{y=1, y=-4}$$

$$X = y + 1$$
 $P \log y = 1$
 $X = 1 + 1 = 2$

$$x = y + 1$$
 $p | y = 4$
 $x = -4 + 1 = -3$
 $(-3, -4)$

6.
$$x^2 + y = 10$$

$$3x + y = 6 \qquad y = 6 - 3 \times$$

$$x^{2}+(6-3x)=10$$

$$x^{2}+6-3x-10=0$$

$$x^2 - 3x - 4 = 0$$

$$(x-4)(x+1)=0$$

$$3(4)+y=6$$

$$3x+y=6$$
 $plug_{x}=-1$
 $3(-1)+y=6$

$$7. y^{2} - y + 4x + 10 = 0$$

$$-2x + 4y = 2$$

$$-2 = -1$$

$$x - 2y = -1$$

$$x = 2y - 1$$

$$y^2 + 7y + 6 = 0$$

$$X = 2y - 1$$
 $x = 2(-6) - 1$

$$X = -13$$

$$X = -3$$